Suppr超能文献

利用绿色荧光蛋白监测生物质水解产物中的真菌生长情况。

Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate.

作者信息

Nichols Nancy N, Quarterman Joshua C, Frazer Sarah E

机构信息

Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL 61604, USA.

出版信息

Biol Methods Protoc. 2018 Jan 29;3(1):bpx012. doi: 10.1093/biomethods/bpx012. eCollection 2018.

Abstract

A reporter gene encoding green fluorescent protein (GFP) was introduced into the ascomycete NRRL30616, and fluorescence of cultures was monitored as a measure of cell growth. Fluorescence in the GFP-expressing strain was measured during growth of cells in defined and complex media as well as in the liquor derived from pretreatment of corn stover, an agricultural residue. Fluorescence mirrored growth of cultures, as measured by optical density and counts of colony forming units. Because traditional methods to monitor growth cannot be used in biomass liquors due to its fibrous, dark-colored nature, the speed and convenience of using GFP to monitor growth is advantageous. Fluorescence of cultures in biomass hydrolysate also correlated with the concentration of furfural in hydrolysate. Furfural and other compounds, present in hydrolysate due to physico-chemical pretreatment of biomass, are inhibitory to fermenting microbes. Therefore, measurement of fluorescence in GFP-expressing is a proxy for measures of microbial growth and furfural consumption, and serves as a convenient indicator of metabolism of fermentation inhibitors in biomass hydrolysate.

摘要

将编码绿色荧光蛋白(GFP)的报告基因导入子囊菌NRRL30616中,并监测培养物的荧光以衡量细胞生长。在限定培养基、复合培养基以及来源于农业废弃物玉米秸秆预处理液中培养细胞的过程中,对表达GFP的菌株的荧光进行了测量。荧光反映了培养物的生长情况,这通过光密度和菌落形成单位计数来衡量。由于生物质液具有纤维状、深色的特性,传统的生长监测方法无法用于生物质液,因此利用GFP监测生长的速度和便利性具有优势。生物质水解产物中培养物的荧光也与水解产物中糠醛的浓度相关。由于生物质的物理化学预处理,水解产物中存在的糠醛和其他化合物对发酵微生物具有抑制作用。因此,测量表达GFP的微生物中的荧光可替代微生物生长和糠醛消耗的测量,并作为生物质水解产物中发酵抑制剂代谢的便捷指标。

相似文献

1
Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate.
Biol Methods Protoc. 2018 Jan 29;3(1):bpx012. doi: 10.1093/biomethods/bpx012. eCollection 2018.
2
Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
Appl Biochem Biotechnol. 2005 Spring;121-124:379-90.
3
Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose.
Biotechnol Prog. 2016 May;32(3):606-12. doi: 10.1002/btpr.2259. Epub 2016 May 17.
4
Transformation and electrophoretic karyotyping of Coniochaeta ligniaria NRRL30616.
Curr Genet. 2011 Jun;57(3):169-75. doi: 10.1007/s00294-010-0332-0. Epub 2011 Jan 11.
5
Maleic acid treatment of biologically detoxified corn stover liquor.
Bioresour Technol. 2016 Sep;216:437-45. doi: 10.1016/j.biortech.2016.05.086. Epub 2016 May 24.
6
Tolerance and metabolic response of VLB120 towards biomass hydrolysate-derived inhibitors.
Biotechnol Biofuels. 2018 Jul 19;11:199. doi: 10.1186/s13068-018-1192-y. eCollection 2018.
7
Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates.
Appl Microbiol Biotechnol. 2004 Mar;64(1):125-31. doi: 10.1007/s00253-003-1401-9. Epub 2003 Aug 8.
9
Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
Crit Rev Biotechnol. 2011 Mar;31(1):20-31. doi: 10.3109/07388551003757816. Epub 2010 May 31.
10
Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate.
Biotechnol Biofuels. 2015 Mar 31;8:55. doi: 10.1186/s13068-015-0233-z. eCollection 2015.

引用本文的文献

1
A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1.
Nat Commun. 2024 Apr 29;15(1):3642. doi: 10.1038/s41467-024-48029-2.
2
Genetic transformation of sp. 2T2.1, key fungal member of a lignocellulose-degrading microbial consortium.
Biol Methods Protoc. 2019 Feb 18;4(1):bpz001. doi: 10.1093/biomethods/bpz001. eCollection 2019.
3
Image-Processing Software for High-Throughput Quantification of Colony Luminescence.
mSphere. 2019 Jan 2;4(1):e00676-18. doi: 10.1128/mSphere.00676-18.

本文引用的文献

1
A Dual-Color Imaging System for Sugarcane Smut Fungus Sporisorium scitamineum.
Plant Dis. 2016 Dec;100(12):2357-2362. doi: 10.1094/PDIS-02-16-0257-SR. Epub 2016 Oct 4.
2
Furfural tolerance and detoxification mechanism in .
Biotechnol Biofuels. 2016 Nov 18;9:250. doi: 10.1186/s13068-016-0668-x. eCollection 2016.
3
A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.
Cytotechnology. 2016 Oct;68(5):2015-25. doi: 10.1007/s10616-016-0015-x. Epub 2016 Aug 3.
5
Bioconversion of lignocellulose: inhibitors and detoxification.
Biotechnol Biofuels. 2013 Jan 28;6(1):16. doi: 10.1186/1754-6834-6-16.
6
Resistant ticks inhibit Metarhizium infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface.
Environ Microbiol. 2012 Jun;14(6):1570-83. doi: 10.1111/j.1462-2920.2012.02747.x. Epub 2012 Apr 17.
7
Deactivation of cellulases by phenols.
Enzyme Microb Technol. 2011 Jan 5;48(1):54-60. doi: 10.1016/j.enzmictec.2010.09.006. Epub 2010 Sep 15.
8
Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading.
Bioresour Technol. 2011 Dec;102(23):10892-7. doi: 10.1016/j.biortech.2011.09.041. Epub 2011 Sep 18.
9
Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach.
Appl Environ Microbiol. 2011 Nov;77(22):7905-14. doi: 10.1128/AEM.05763-11. Epub 2011 Sep 16.
10
Transformation and electrophoretic karyotyping of Coniochaeta ligniaria NRRL30616.
Curr Genet. 2011 Jun;57(3):169-75. doi: 10.1007/s00294-010-0332-0. Epub 2011 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验