Suppr超能文献

口腔鳞状细胞癌患者包括颈部侵袭组织的恶性预测:基于 HRMAS NMR 的代谢组学研究。

Malignancy prediction among tissues from Oral SCC patients including neck invasions: a H HRMAS NMR based metabolomic study.

机构信息

Centre of Biomedical Research, Formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India.

Department of Chemistry, University of Lucknow, University Road, Lucknow, 226007, India.

出版信息

Metabolomics. 2020 Mar 11;16(3):38. doi: 10.1007/s11306-020-01660-8.

Abstract

INTRODUCTION

Oral cancer is a sixth commonly occurring cancer globally. The use of tobacco and alcohol consumption are being considered as the major risk factors for oral cancer. The metabolic profiling of tissue specimens for developing carcinogenic perturbations will allow better prognosis.

OBJECTIVES

To profile and generate precise H HRMAS NMR spectral and quantitative statistical models of oral squamous cell carcinoma (OSCC) in tissue specimens including tumor, bed, margin and facial muscles. To apply the model in blinded prediction of malignancy among oral and neck tissues in an unknown set of patients suffering from OSCC along with neck invasion.

METHODS

Statistical models of H HRMAS NMR spectral data on 180 tissues comprising tumor, margin and bed from 43 OSCC patients were performed. The combined metabolites, lipids spectral intensity and concentration-based malignancy prediction models were proposed. Further, 64 tissue specimens from twelve patients, including neck invasions, were tested for malignancy in a blinded manner.

RESULTS

Forty-eight metabolites including lipids have been quantified in tumor and adjacent tissues. All metabolites other than lipids were found to be upregulated in malignant tissues except for ambiguous glucose. All of three prediction models have successfully identified malignancy status among blinded set of 64 tissues from 12 OSCC patients with an accuracy of above 90%.

CONCLUSION

The efficiency of the models in malignancy prediction based on tumor induced metabolic perturbations supported by histopathological validation may revolutionize the OSCC assessment. Further, the results may enable machine learning to trace tumor induced altered metabolic pathways for better pattern recognition. Thus, it complements the newly developed REIMS-MS iKnife real time precession during surgery.

摘要

简介

口腔癌是全球第六大常见癌症。吸烟和饮酒被认为是口腔癌的主要危险因素。对组织标本进行代谢特征分析以发现致癌性干扰,将有助于改善预后。

目的

对口腔鳞状细胞癌(OSCC)组织标本中的肿瘤、床和边缘以及面部肌肉进行 H HRMAS NMR 光谱特征分析和建立精确的定量统计模型。将该模型应用于一组未知的患有 OSCC 并伴有颈部侵犯的口腔和颈部组织的恶性肿瘤预测中。

方法

对 43 例 OSCC 患者的 180 例组织(包括肿瘤、边缘和床)的 H HRMAS NMR 光谱数据进行了统计模型分析。提出了基于联合代谢物、脂质光谱强度和浓度的恶性肿瘤预测模型。进一步,对 12 例患者的 64 例组织标本(包括颈部侵犯)进行了盲法恶性肿瘤检测。

结果

在肿瘤和相邻组织中定量了 48 种包括脂质在内的代谢物。除了葡萄糖以外,所有的代谢物在恶性组织中都被上调,除了一些含糊不清的葡萄糖。所有三种预测模型都成功地识别了 12 例 OSCC 患者的 64 例盲法组织中的恶性肿瘤状态,准确率均在 90%以上。

结论

基于肿瘤诱导的代谢紊乱和组织病理学验证的模型在恶性肿瘤预测中的效率,可能会彻底改变 OSCC 的评估方式。此外,这些结果还可能使机器学习能够追踪肿瘤诱导的代谢途径改变,从而进行更好的模式识别。因此,它可以补充新开发的 REIMS-MS iKnife 在手术中的实时应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验