Suppr超能文献

使用基于补丁或 CNN 的分割技术以及自下而上的几何约束对皮质沟进行自动标记。

Automatic labeling of cortical sulci using patch- or CNN-based segmentation techniques combined with bottom-up geometric constraints.

机构信息

Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France.

Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France.

出版信息

Med Image Anal. 2020 May;62:101651. doi: 10.1016/j.media.2020.101651. Epub 2020 Feb 28.

Abstract

The extreme variability of the folding pattern of the human cortex makes the recognition of cortical sulci, both automatic and manual, particularly challenging. Reliable identification of the human cortical sulci in its entirety, is extremely difficult and is practiced by only a few experts. Moreover, these sulci correspond to more than a hundred different structures, which makes manual labeling long and fastidious and therefore limits access to large labeled databases to train machine learning. Here, we seek to improve the current model proposed in the Morphologist toolbox, a widely used sulcus recognition toolbox included in the BrainVISA package. Two novel approaches are proposed: patch-based multi-atlas segmentation (MAS) techniques and convolutional neural network (CNN)-based approaches. Both are currently applied for anatomical segmentations because they embed much better representations of inter-subject variability than approaches based on a single template atlas. However, these methods typically focus on voxel-wise labeling, disregarding certain geometrical and topological properties of interest for sulcus morphometry. Therefore, we propose to refine these approaches with domain specific bottom-up geometric constraints provided by the Morphologist toolbox. These constraints are utilized to provide a single sulcus label to each topologically elementary fold, the building blocks of the pattern recognition problem. To eliminate the shortcomings associated with the Morphologist's pre-segmentation into elementary folds, we complement this regularization scheme using a top-down perspective which triggers an additional cleavage of the elementary folds when required. All the newly proposed models outperform the current Morphologist model, the most efficient being a CNN U-Net-based approach which carries out sulcus recognition within a few seconds.

摘要

人类大脑皮层折叠模式的极端可变性使得皮质沟的自动和手动识别变得特别具有挑战性。要完整、可靠地识别人类大脑皮层沟,极其困难,只有少数专家能够做到。此外,这些脑沟对应着超过一百种不同的结构,这使得手动标记既漫长又繁琐,因此限制了使用大型标记数据库来训练机器学习。在这里,我们试图改进目前在 Morphologist 工具箱中提出的模型,这是 BrainVISA 软件包中广泛使用的脑沟识别工具箱。我们提出了两种新方法:基于补丁的多图谱分割 (MAS) 技术和基于卷积神经网络 (CNN) 的方法。这两种方法目前都应用于解剖学分割,因为它们比基于单个模板图谱的方法更好地嵌入了个体间变异性的表示。然而,这些方法通常侧重于体素级别的标记,而忽略了脑沟形态测量中感兴趣的某些几何和拓扑特性。因此,我们建议利用 Morphologist 工具箱提供的特定于领域的自下而上的几何约束来改进这些方法。这些约束用于为模式识别问题的基本拓扑折叠中的每个提供单个脑沟标签。为了消除 Morphologist 预分割为基本折叠所带来的缺点,我们使用自上而下的视角来补充这个正则化方案,当需要时,该视角会触发基本折叠的额外分裂。所有新提出的模型都优于目前的 Morphologist 模型,其中最有效的是基于 CNN U-Net 的方法,它可以在几秒钟内完成脑沟识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验