Lee Seungeun, Lee Seunghwan, Willbrand Ethan H, Parker Benjamin J, Bunge Silvia A, Weiner Kevin S, Lyu Ilwoo
IEEE Trans Med Imaging. 2025 Feb;44(2):915-926. doi: 10.1109/TMI.2024.3468727. Epub 2025 Feb 4.
The identification of cortical sulci is key for understanding functional and structural development of the cortex. While large, consistent sulci (or primary/secondary sulci) receive significant attention in most studies, the exploration of smaller and more variable sulci (or putative tertiary sulci) remains relatively under-investigated. Despite its importance, automatic labeling of cortical sulci is challenging due to (1) the presence of substantial anatomical variability, (2) the relatively small size of the regions of interest (ROIs) compared to unlabeled regions, and (3) the scarcity of annotated labels. In this paper, we propose a novel end-to-end learning framework using a spherical convolutional neural network (CNN). Specifically, the proposed method learns to effectively warp geometric features in a direction that facilitates the labeling of sulci while mitigating the impact of anatomical variability. Moreover, we introduce a guided-attention mechanism that takes into account the extent of deformation induced by the learned warping. This extracts discriminative features that emphasize sulcal ROIs, while suppressing irrelevant information of unlabeled regions. In the experiments, we evaluate the proposed method on 8 sulci of the posterior medial cortex. Our method outperforms existing methods particularly in the putative tertiary sulci. The code is publicly available at https://github.com/Shape-Lab/DSPHARM-Net.
识别大脑皮质沟回对于理解皮质的功能和结构发育至关重要。虽然大多数研究都高度关注大的、一致的沟回(即初级/次级沟回),但对较小且更具变异性的沟回(即假定的三级沟回)的探索仍相对较少。尽管其很重要,但由于以下原因,大脑皮质沟回的自动标注具有挑战性:(1)存在大量的解剖变异性;(2)与未标注区域相比,感兴趣区域(ROI)的尺寸相对较小;(3)带注释标签的稀缺性。在本文中,我们提出了一种使用球面卷积神经网络(CNN)的新型端到端学习框架。具体而言,所提出的方法学习在一个有利于沟回标注的方向上有效地扭曲几何特征,同时减轻解剖变异性的影响。此外,我们引入了一种引导注意力机制,该机制考虑了由学习到的扭曲引起的变形程度。这提取了强调沟回ROI的判别特征,同时抑制未标注区域的无关信息。在实验中,我们在大脑后内侧皮质的8个沟回上评估了所提出的方法。我们的方法尤其在假定的三级沟回方面优于现有方法。代码可在https://github.com/Shape-Lab/DSPHARM-Net上公开获取。