Suppr超能文献

使用范德华密度泛函研究体材料和低维材料的弹性性质。

Elastic properties of bulk and low-dimensional materials using Van der Waals density functional.

作者信息

Choudhary Kamal, Cheon Gowoon, Reed Evan, Tavazza Francesca

机构信息

Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.

出版信息

Phys Rev B. 2018;98(1). doi: 10.1103/physrevb.98.014107.

Abstract

In this work, we present a high-throughput first-principles study of elastic properties of bulk and monolayer materials mainly using the vdW-DF-optB88 functional. We discuss the trends on the elastic response with respect to changes in dimensionality. We identify a relation between exfoliation energy and elastic constants for layered materials that can help to guide the search for vdW bonding in materials. We also predicted a few novel materials with auxetic behavior. The uncertainty in structural and elastic properties due to the inclusion of vdW interactions is discussed. We investigated 11,067 bulk and 257 monolayer materials. Lastly, we found that the trends in elastic constants for bulk and their monolayer counterparts can be very different. All the computational results are made publicly available at easy-to-use websites: https://www.ctcms.nist.gov/~knc6/JVASP.html and https://jarvis.nist.gov/. Our dataset can be used to identify stiff and flexible materials for industrial applications.

摘要

在这项工作中,我们主要使用vdW-DF-optB88泛函对体材料和单层材料的弹性性质进行了高通量第一性原理研究。我们讨论了弹性响应随维度变化的趋势。我们确定了层状材料的剥离能与弹性常数之间的关系,这有助于指导在材料中寻找范德华键。我们还预测了一些具有负泊松比行为的新型材料。讨论了由于包含范德华相互作用而导致的结构和弹性性质的不确定性。我们研究了11067种体材料和257种单层材料。最后,我们发现体材料及其单层对应物的弹性常数趋势可能非常不同。所有计算结果都在易于使用的网站上公开提供:https://www.ctcms.nist.gov/~knc6/JVASP.html和https://jarvis.nist.gov/。我们的数据集可用于识别适用于工业应用的刚性和柔性材料。

相似文献

3
Data-driven discovery of 3D and 2D thermoelectric materials.
J Phys Condens Matter. 2020 Aug 27;32(47). doi: 10.1088/1361-648X/aba06b.
6
High-throughput Discovery of Topologically Non-trivial Materials using Spin-orbit Spillage.
Sci Rep. 2019 Jun 12;9(1):8534. doi: 10.1038/s41598-019-45028-y.
7
Perspectives on van der Waals Density Functionals: The Case of TiS.
J Phys Chem A. 2020 Nov 25;124(47):9867-9876. doi: 10.1021/acs.jpca.0c05973. Epub 2020 Nov 15.
8
Density functional theory-based electric field gradient database.
Sci Data. 2020 Oct 21;7(1):362. doi: 10.1038/s41597-020-00707-8.
9
van der Waals exchange-correlation functionals over bulk and surface properties of transition metals.
J Phys Condens Matter. 2019 Aug 7;31(31):315501. doi: 10.1088/1361-648X/ab18ea. Epub 2019 Apr 12.
10
Friends not Foes: Exfoliation of Non-van der Waals Materials.
Acc Chem Res. 2024 Sep 3;57(17):2490-2499. doi: 10.1021/acs.accounts.4c00295. Epub 2024 Aug 16.

引用本文的文献

2
3
Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems.
Nanomaterials (Basel). 2023 Jan 17;13(3):373. doi: 10.3390/nano13030373.
4
Systematic DFT+U and Quantum Monte Carlo Benchmark of Magnetic Two-Dimensional (2D) CrX (X = I, Br, Cl, F).
J Phys Chem C Nanomater Interfaces. 2023;127(2). doi: 10.1021/acs.jpcc.2c06733.
5
High-Throughput DFT-Based Discovery of Next Generation Two-Dimensional (2D) Superconductors.
Nano Lett. 2023 Feb 8;23(3):969-978. doi: 10.1021/acs.nanolett.2c04420. Epub 2023 Jan 30.
6
Hydrogenated Ψ-graphene as an ultraviolet optomechanical sensor.
RSC Adv. 2020 Jul 10;10(44):26197-26211. doi: 10.1039/d0ra03104f. eCollection 2020 Jul 9.
7
Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers.
RSC Adv. 2021 Mar 25;11(20):12189-12199. doi: 10.1039/d0ra10827h. eCollection 2021 Mar 23.
8
Efficient prediction of temperature-dependent elastic and mechanical properties of 2D materials.
Sci Rep. 2022 Mar 8;12(1):3776. doi: 10.1038/s41598-022-07819-8.

本文引用的文献

2
Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds.
Nat Nanotechnol. 2018 Mar;13(3):246-252. doi: 10.1038/s41565-017-0035-5. Epub 2018 Feb 6.
3
Computational methods for 2D materials: discovery, property characterization, and application design.
J Phys Condens Matter. 2017 Nov 29;29(47):473001. doi: 10.1088/1361-648X/aa9305.
6
Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials.
Phys Rev Lett. 2017 Mar 10;118(10):106101. doi: 10.1103/PhysRevLett.118.106101. Epub 2017 Mar 7.
7
Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.
Nano Lett. 2017 Mar 8;17(3):1915-1923. doi: 10.1021/acs.nanolett.6b05229. Epub 2017 Feb 15.
8
Auxetic Black Phosphorus: A 2D Material with Negative Poisson's Ratio.
Nano Lett. 2016 Oct 12;16(10):6701-6708. doi: 10.1021/acs.nanolett.6b03607. Epub 2016 Sep 22.
10
Topological phases in two-dimensional materials: a review.
Rep Prog Phys. 2016 Jun;79(6):066501. doi: 10.1088/0034-4885/79/6/066501. Epub 2016 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验