Suppr超能文献

DNA 稳定同位素探针技术揭示了微生物分解和降解硅藻源海洋颗粒物质的潜在关键参与者。

DNA stable-isotope probing reveals potential key players for microbial decomposition and degradation of diatom-derived marine particulate matter.

机构信息

State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.

Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China.

出版信息

Microbiologyopen. 2020 May;9(5):e1013. doi: 10.1002/mbo3.1013. Epub 2020 Mar 12.

Abstract

Microbially mediated decomposition of particulate organic carbon (POC) is a central component of the oceanic carbon cycle, controlling the flux of organic carbon from the surface ocean to the deep ocean. Yet, the specific microbial taxa responsible for POC decomposition and degradation in the deep ocean are still unknown. To target the active microbial lineages involved in these processes, C-labeled particulate organic matter (POM) was used as a substrate to incubate particle-attached (PAM) and free-living microbial (FLM) assemblages from the epi- and bathypelagic zones of the New Britain Trench (NBT). By combining DNA stable-isotope probing and Illumina Miseq high-throughput sequencing of bacterial 16S rRNA gene, we identified 14 active bacterial taxonomic groups that implicated in the decomposition of C-labeled POM at low and high pressures under the temperature of 15°C. Our results show that both PAM and FLM were able to decompose POC and assimilate the released DOC. However, similar bacterial taxa in both the PAM and FLM assemblages were involved in POC decomposition and DOC degradation, suggesting the decoupling between microbial lifestyles and ecological functions. Microbial decomposition of POC and degradation of DOC were accomplished primarily by particle-attached bacteria at atmospheric pressure and by free-living bacteria at high pressures. Overall, the POC degradation rates were higher at atmospheric pressure (0.1 MPa) than at high pressures (20 and 40 MPa) under 15°C. Our results provide direct evidence linking the specific particle-attached and free-living bacterial lineages to decomposition and degradation of diatomic detritus at low and high pressures and identified the potential mediators of POC fluxes in the epi- and bathypelagic zones.

摘要

微生物介导的颗粒有机碳(POC)分解是海洋碳循环的核心组成部分,控制着有机碳从海洋表面向深海的通量。然而,在深海中负责 POC 分解和降解的特定微生物类群仍然未知。为了针对参与这些过程的活跃微生物类群,我们使用 C 标记的颗粒有机物质(POM)作为底物,培养来自新不列颠海沟(NBT)表生带和深海带的颗粒附着(PAM)和自由生活微生物(FLM)组合。通过结合 DNA 稳定同位素探针和 Illumina Miseq 高通量测序细菌 16S rRNA 基因,我们鉴定出 14 个活跃的细菌分类群,这些分类群参与了在 15°C 温度下的低压和高压下 C 标记的 POM 的分解。我们的结果表明,PAM 和 FLM 都能够分解 POC 并同化释放的 DOC。然而,PAM 和 FLM 组合中相似的细菌类群参与了 POC 的分解和 DOC 的降解,这表明微生物生活方式和生态功能之间的解耦。在大气压力下,主要由附着颗粒的细菌完成 POC 的分解和 DOC 的降解,而在高压下(20 和 40 MPa)则由自由生活的细菌完成。总体而言,在 15°C 下,在大气压力(0.1 MPa)下的 POC 降解速率高于高压(20 和 40 MPa)下的 POC 降解速率。我们的结果提供了直接证据,将特定的附着颗粒和自由生活的细菌类群与在低压和高压下的二型碎屑的分解和降解联系起来,并确定了表生带和深海带中 POC 通量的潜在介导物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c490/7221439/1a907f1aaf66/MBO3-9-e1013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验