Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA.
Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
Am J Transplant. 2020 Sep;20(9):2366-2379. doi: 10.1111/ajt.15845. Epub 2020 Apr 5.
Foxp3+ regulatory T cells (Tregs) are potent immunoregulatory cells, prompting strong interests in manipulating them for therapeutic purposes. However, significant challenges remain, including their heterogeneity and functional instability. Here we focused on the inducible Tregs (iTregs) and studied whether the Foxp3 locus can be epigenetically edited ex vivo to produce stable therapeutic iTregs. Under iTreg-inducing condition where activated CD4 T effector cells were converted to Foxp3+ Tregs, we tested approximately 30 compounds and identified 3 chromatin-modifying chemical compounds (3C) consisting of sodium butyrate (a broad histone deacetylase inhibitor), UNC0646 (a histone methyltransferase inhibitor), and vitamin C (a TET dioxygenase co-activator), that together produced complete demethylation at the conserved noncoding sequence 2 (CNS2) region of Foxp3 locus. We found that iTregs induced in the presence of 3C (3C-iTregs) are stable, even after exposure to inflammatory cytokines. They expressed high levels of Foxp3 and exhibited potent suppressive activities both in vitro and in vivo. We showed that in models of autoimmunity and transplant rejection, adoptive transfer of antigen-specific 3C-iTregs prevented the induction of experimental autoimmune encephalitis and enabled long-term skin allograft survival. Our data demonstrate that the Foxp3 locus can be epigenetically edited ex vivo to generate stable therapeutic iTregs.
Foxp3+ 调节性 T 细胞(Tregs)是具有强大免疫调节功能的细胞,这促使人们强烈希望通过操纵它们来达到治疗目的。然而,仍然存在一些重大挑战,包括其异质性和功能不稳定性。在这里,我们专注于诱导性调节性 T 细胞(iTregs),并研究了 Foxp3 基因座是否可以在体外通过表观遗传编辑产生稳定的治疗性 iTregs。在诱导 iTreg 的条件下,激活的 CD4 T 效应细胞被转化为 Foxp3+Tregs,我们测试了大约 30 种化合物,并确定了 3 种组蛋白修饰化学化合物(3C),包括丁酸钠(一种广泛的组蛋白去乙酰化酶抑制剂)、UNC0646(一种组蛋白甲基转移酶抑制剂)和维生素 C(一种 TET 双加氧酶共激活剂),它们共同导致 Foxp3 基因座保守非编码序列 2(CNS2)区域的完全去甲基化。我们发现,在 3C 存在的情况下诱导的 iTregs(3C-iTregs)是稳定的,即使在暴露于炎性细胞因子后也是如此。它们表达高水平的 Foxp3,并表现出体外和体内的强大抑制活性。我们表明,在自身免疫和移植排斥模型中,抗原特异性 3C-iTregs 的过继转移可防止实验性自身免疫性脑脊髓炎的诱导,并使皮肤同种异体移植物长期存活。我们的数据表明,Foxp3 基因座可以在体外通过表观遗传编辑产生稳定的治疗性 iTregs。