Suppr超能文献

基于机器学习代理模型的高效全局结构优化

Efficient Global Structure Optimization with a Machine-Learned Surrogate Model.

作者信息

Bisbo Malthe K, Hammer Bjørk

机构信息

Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.

出版信息

Phys Rev Lett. 2020 Feb 28;124(8):086102. doi: 10.1103/PhysRevLett.124.086102.

Abstract

We propose a scheme for global optimization with first-principles energy expressions of atomistic structure. While unfolding its search, the method actively learns a surrogate model of the potential energy landscape on which it performs a number of local relaxations (exploitation) and further structural searches (exploration). Assuming Gaussian processes, deploying two separate kernel widths to better capture rough features of the energy landscape while retaining a good resolution of local minima, an acquisition function is used to decide on which of the resulting structures is the more promising and should be treated at the first-principles level. The method is demonstrated to outperform by 2 orders of magnitude a well established first-principles based evolutionary algorithm in finding surface reconstructions. Finally, global optimization with first-principles energy expressions is utilized to identify initial stages of the edge oxidation and oxygen intercalation of graphene sheets on the Ir(111) surface.

摘要

我们提出了一种利用原子结构的第一性原理能量表达式进行全局优化的方案。在展开搜索时,该方法会主动学习势能面的代理模型,并在该模型上进行多次局部弛豫(利用)和进一步的结构搜索(探索)。假设为高斯过程,通过部署两个单独的核宽度来更好地捕捉能量面的粗糙特征,同时保持对局部极小值的良好分辨率,使用一个采集函数来决定哪些生成的结构更有前景,应该在第一性原理层面进行处理。结果表明,在寻找表面重构时,该方法比一种成熟的基于第一性原理的进化算法性能高出两个数量级。最后,利用第一性原理能量表达式进行全局优化,以确定Ir(111)表面上石墨烯片边缘氧化和氧嵌入的初始阶段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验