Suppr超能文献

用于稳健且增量式数据可视化的自组织星云状生长

Self-Organizing Nebulous Growths for Robust and Incremental Data Visualization.

作者信息

Senanayake Damith A, Wang Wei, Naik Shalin H, Halgamuge Saman

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Oct;32(10):4588-4602. doi: 10.1109/TNNLS.2020.3023941. Epub 2021 Oct 5.

Abstract

Nonparametric dimensionality reduction techniques, such as t-distributed Stochastic Neighbor Embedding (t-SNE) and uniform manifold approximation and projection (UMAP), are proficient in providing visualizations for data sets of fixed sizes. However, they cannot incrementally map and insert new data points into an already provided data visualization. We present self-organizing nebulous growths (SONG), a parametric nonlinear dimensionality reduction technique that supports incremental data visualization, i.e., incremental addition of new data while preserving the structure of the existing visualization. In addition, SONG is capable of handling new data increments, no matter whether they are similar or heterogeneous to the already observed data distribution. We test SONG on a variety of real and simulated data sets. The results show that SONG is superior to Parametric t-SNE, t-SNE, and UMAP in incremental data visualization. Especially, for heterogeneous increments, SONG improves over Parametric t-SNE by 14.98% on the Fashion MNIST data set and 49.73% on the MNIST data set regarding the cluster quality measured by the adjusted mutual information scores. On similar or homogeneous increments, the improvements are 8.36% and 42.26%, respectively. Furthermore, even when the abovementioned data sets are presented all at once, SONG performs better or comparable to UMAP and superior to t-SNE. We also demonstrate that the algorithmic foundations of SONG render it more tolerant to noise compared with UMAP and t-SNE, thus providing greater utility for data with high variance, high mixing of clusters, or noise.

摘要

非参数降维技术,如t分布随机邻域嵌入(t-SNE)和均匀流形近似与投影(UMAP),擅长为固定大小的数据集提供可视化。然而,它们无法将新数据点增量映射并插入到已有的数据可视化中。我们提出了自组织星云增长(SONG),这是一种参数化非线性降维技术,支持增量数据可视化,即在保留现有可视化结构的同时增量添加新数据。此外,SONG能够处理新的数据增量,无论它们与已观察到的数据分布相似还是异构。我们在各种真实和模拟数据集上测试了SONG。结果表明,在增量数据可视化方面,SONG优于参数化t-SNE、t-SNE和UMAP。特别是,对于异构增量,在Fashion MNIST数据集上,SONG相对于参数化t-SNE在通过调整互信息分数衡量的聚类质量方面提高了14.98%,在MNIST数据集上提高了49.73%。在相似或同构增量方面,改进分别为8.36%和42.26%。此外,即使上述数据集一次性全部呈现,SONG的表现也优于或与UMAP相当,且优于t-SNE。我们还证明,与UMAP和t-SNE相比,SONG的算法基础使其对噪声更具容忍性,从而为具有高方差、高聚类混合或噪声的数据提供了更大的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验