Liu Chang, Xu Fengli, Gao Chen, Wang Zhaocheng, Li Yong, Gao Jianxi
Department of Electronic Engineering, Tsinghua University, Beijing, P. R. China.
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, P. R. China.
Nat Commun. 2024 Oct 24;15(1):9203. doi: 10.1038/s41467-024-53303-4.
Resilience, the ability to maintain fundamental functionality amidst failures and errors, is crucial for complex networked systems. Most analytical approaches rely on predefined equations for node activity dynamics and simplifying assumptions on network topology, limiting their applicability to real-world systems. Here, we propose ResInf, a deep learning framework integrating transformers and graph neural networks to infer resilience directly from observational data. ResInf learns representations of node activity dynamics and network topology without simplifying assumptions, enabling accurate resilience inference and low-dimensional visualization. Experimental results show that ResInf significantly outperforms analytical methods, with an F1-score improvement of up to 41.59% over Gao-Barzel-Barabási framework and 14.32% over spectral dimension reduction. It also generalizes to unseen topologies and dynamics and maintains robust performance despite observational disturbances. Our findings suggest that ResInf addresses an important gap in resilience inference for real-world systems, offering a fresh perspective on incorporating data-driven approaches to complex network modeling.
弹性,即在故障和错误中维持基本功能的能力,对于复杂的网络系统至关重要。大多数分析方法依赖于节点活动动态的预定义方程以及对网络拓扑的简化假设,这限制了它们对现实世界系统的适用性。在此,我们提出ResInf,这是一个集成了Transformer和图神经网络的深度学习框架,用于直接从观测数据中推断弹性。ResInf无需简化假设就能学习节点活动动态和网络拓扑的表示,从而实现准确的弹性推断和低维可视化。实验结果表明,ResInf显著优于分析方法,与高-巴尔泽-巴拉巴西框架相比,F1分数提高了高达41.59%,与谱维约简相比提高了14.32%。它还能推广到未见的拓扑和动态情况,并且尽管存在观测干扰仍能保持稳健的性能。我们的研究结果表明,ResInf填补了现实世界系统弹性推断中的一个重要空白,为将数据驱动方法纳入复杂网络建模提供了全新视角。