Suppr超能文献

利用优化的机器学习技术实现锂离子电池荷电状态估计的增强

Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques.

作者信息

Hannan M A, Lipu M S Hossain, Hussain Aini, Ker Pin Jern, Mahlia T M I, Mansor M, Ayob Afida, Saad Mohamad H, Dong Z Y

机构信息

Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, 43000, Malaysia.

Centre for Integrated Systems Engineering and Advanced Technologies, FKAB, Universiti Kebagsaan Malaysia, Bangi, 43600, Malaysia.

出版信息

Sci Rep. 2020 Mar 13;10(1):4687. doi: 10.1038/s41598-020-61464-7.

Abstract

State of charge (SOC) is a crucial index used in the assessment of electric vehicle (EV) battery storage systems. Thus, SOC estimation of lithium-ion batteries has been widely investigated because of their fast charging, long-life cycle, and high energy density characteristics. However, precise SOC assessment of lithium-ion batteries remains challenging because of their varying characteristics under different working environments. Machine learning techniques have been widely used to design an advanced SOC estimation method without the information of battery chemical reactions, battery models, internal properties, and additional filters. Here, the capacity of optimized machine learning techniques are presented toward enhanced SOC estimation in terms of learning capability, accuracy, generalization performance, and convergence speed. We validate the proposed method through lithium-ion battery experiments, EV drive cycles, temperature, noise, and aging effects. We show that the proposed method outperforms several state-of-the-art approaches in terms of accuracy, adaptability, and robustness under diverse operating conditions.

摘要

荷电状态(SOC)是评估电动汽车(EV)电池存储系统时使用的一个关键指标。因此,由于锂离子电池具有快速充电、长寿命周期和高能量密度等特性,其SOC估计已得到广泛研究。然而,由于锂离子电池在不同工作环境下特性各异,对其进行精确的SOC评估仍然具有挑战性。机器学习技术已被广泛用于设计一种先进的SOC估计方法,该方法无需电池化学反应、电池模型、内部特性和额外滤波器等信息。在此,针对增强的SOC估计,从学习能力、准确性、泛化性能和收敛速度方面展示了优化机器学习技术的能力。我们通过锂离子电池实验、电动汽车行驶循环、温度、噪声和老化效应来验证所提出的方法。我们表明,在各种运行条件下,所提出的方法在准确性、适应性和鲁棒性方面优于几种现有技术方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de3/7070070/118af36271ee/41598_2020_61464_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验