Suppr超能文献

基于深度学习的电动汽车电池荷电状态估计:克服技术瓶颈

Deep learning-based state of charge estimation for electric vehicle batteries: Overcoming technological bottlenecks.

作者信息

Lin Shih-Lin

机构信息

Graduate Institute of Vehicle Engineering, National Changhua University of Education, No.1, Jin-De Road, Changhua City, Changhua County, 50007, Taiwan.

出版信息

Heliyon. 2024 Aug 12;10(16):e35780. doi: 10.1016/j.heliyon.2024.e35780. eCollection 2024 Aug 30.

Abstract

This study presents a novel deep learning-based approach for the State of Charge (SOC) estimation of electric vehicle (EV) batteries, addressing critical challenges in battery management and enhancing EV efficiency. Unlike conventional methods, our research leverages a diverse dataset encompassing environmental factors (e.g., temperature, altitude), vehicle parameters (e.g., speed, throttle), and battery attributes (e.g., voltage, current, temperature) to train a sophisticated deep learning model. The key novelty of our approach lies in its integration of real-world driving data from a BMW i3 EV, enabling the model to capture the intricate dynamics affecting SOC with remarkable accuracy. We conducted 72 tests using actual driving trip data, which included 25 types of environmental variables, to validate the feasibility and effectiveness of our proposed model. The deep learning network, designed specifically for SOC estimation, outperformed traditional models by demonstrating superior accuracy and reliability in predicting SOC values. Our findings indicate a significant advancement in SOC estimation techniques, offering actionable insights for both policymakers and industry practitioners aimed at fostering energy conservation, carbon reduction, and the development of more efficient EVs. The study's major contribution is its demonstrated capability to improve SOC estimation accuracy by understanding the complex interrelationships among various influencing factors, thereby addressing a pivotal challenge in EV battery management. By employing cutting-edge deep learning techniques, this research not only marks a significant leap forward from traditional SOC estimation methods but also contributes to the broader goals of sustainable transportation and environmental protection.

摘要

本研究提出了一种基于深度学习的新型方法,用于电动汽车(EV)电池的荷电状态(SOC)估计,解决电池管理中的关键挑战并提高电动汽车效率。与传统方法不同,我们的研究利用了一个包含环境因素(如温度、海拔)、车辆参数(如速度、油门)和电池属性(如电压、电流、温度)的多样化数据集来训练一个复杂的深度学习模型。我们方法的关键新颖之处在于它整合了来自宝马i3电动汽车的实际驾驶数据,使模型能够以极高的精度捕捉影响SOC的复杂动态。我们使用实际驾驶行程数据进行了72次测试,其中包括25种环境变量,以验证我们提出的模型的可行性和有效性。专门为SOC估计设计的深度学习网络在预测SOC值方面表现出卓越的准确性和可靠性,优于传统模型。我们的研究结果表明SOC估计技术取得了重大进展,为政策制定者和行业从业者提供了可操作的见解,旨在促进节能、碳减排以及开发更高效的电动汽车。该研究的主要贡献在于其通过理解各种影响因素之间的复杂相互关系来提高SOC估计准确性的能力,从而解决了电动汽车电池管理中的一个关键挑战。通过采用前沿的深度学习技术,这项研究不仅标志着从传统SOC估计方法向前迈出了重要一步,也为可持续交通和环境保护的更广泛目标做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1505/11381739/ce9042f7ad97/gr1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验