Suppr超能文献

自举法促进了 RSFC-行为关联:个体认知特征预测的应用。

Bootstrapping promotes the RSFC-behavior associations: An application of individual cognitive traits prediction.

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing, China.

Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.

出版信息

Hum Brain Mapp. 2020 Jun 15;41(9):2302-2316. doi: 10.1002/hbm.24947. Epub 2020 Mar 16.

Abstract

Resting-state functional connectivity (RSFC) records enormous functional interaction information between any pair of brain nodes, which enriches the individual-phenotypic prediction. To reduce high-dimensional features, correlation analysis is a common way for feature selection. However, resting state fMRI signal exhibits typically low signal-to-noise ratio and the correlation analysis is sensitive to outliers and data distribution, which may bring unstable features to prediction. To alleviate this problem, a bootstrapping-based feature selection framework was proposed and applied to connectome-based predictive modeling, support vector regression, least absolute shrinkage and selection operator, and Ridge regression to predict a series of cognitive traits based on Human Connectome Project data. To systematically investigate the influences of different parameter settings on the bootstrapping-based framework, 216 parameter combinations were evaluated and the best performance among them was identified as the final prediction result for each cognitive trait. By using the bootstrapping methods, the best prediction performances outperformed the baseline method in all four prediction models. Furthermore, the proposed framework could effectively reduce the feature dimension by retaining the more stable features. The results demonstrate that the proposed framework is an easy-to-use and effective method to improve RSFC prediction of cognitive traits and is highly recommended in future RSFC-prediction studies.

摘要

静息态功能连接 (RSFC) 记录了大脑任意两个节点之间大量的功能交互信息,丰富了个体表型预测。为了降低高维特征,相关分析是特征选择的常用方法。然而,静息态 fMRI 信号通常具有较低的信噪比,相关分析对离群值和数据分布敏感,这可能会给预测带来不稳定的特征。为了缓解这个问题,提出了一种基于引导的特征选择框架,并将其应用于连接组预测建模、支持向量回归、最小绝对值收缩和选择算子以及岭回归,以基于人类连接组计划数据预测一系列认知特征。为了系统地研究不同参数设置对基于引导的框架的影响,评估了 216 种参数组合,并确定了其中最佳性能作为每个认知特征的最终预测结果。通过使用引导方法,在所有四个预测模型中,最佳预测性能均优于基线方法。此外,该框架可以通过保留更稳定的特征有效地降低特征维度。结果表明,该框架是一种简单易用且有效的方法,可以提高 RSFC 对认知特征的预测,在未来的 RSFC 预测研究中强烈推荐使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a7a/7268063/b30dd16767ba/HBM-41-2302-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验