Suppr超能文献

个体特异性 fMRI 子空间可提高行为功能连接预测。

Individual-specific fMRI-Subspaces improve functional connectivity prediction of behavior.

机构信息

Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging and Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore.

Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging and Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore.

出版信息

Neuroimage. 2019 Apr 1;189:804-812. doi: 10.1016/j.neuroimage.2019.01.069. Epub 2019 Jan 31.

Abstract

There is significant interest in using resting-state functional connectivity (RSFC) to predict human behavior. Good behavioral prediction should in theory require RSFC to be sufficiently distinct across participants; if RSFC were the same across participants, then behavioral prediction would obviously be poor. Therefore, we hypothesize that removing common resting-state functional magnetic resonance imaging (rs-fMRI) signals that are shared across participants would improve behavioral prediction. Here, we considered 803 participants from the human connectome project (HCP) with four rs-fMRI runs. We applied the common and orthogonal basis extraction (COBE) technique to decompose each HCP run into two subspaces: a common (group-level) subspace shared across all participants and a subject-specific subspace. We found that the first common COBE component of the first HCP run was localized to the visual cortex and was unique to the run. On the other hand, the second common COBE component of the first HCP run and the first common COBE component of the remaining HCP runs were highly similar and localized to regions within the default network, including the posterior cingulate cortex and precuneus. Overall, this suggests the presence of run-specific (state-specific) effects that were shared across participants. By removing the first and second common COBE components from the first HCP run, and the first common COBE component from the remaining HCP runs, the resulting RSFC improves behavioral prediction by an average of 11.7% across 58 behavioral measures spanning cognition, emotion and personality.

摘要

利用静息态功能连接(RSFC)来预测人类行为引起了广泛关注。好的行为预测理论上应该要求 RSFC 在参与者之间有足够的差异;如果 RSFC 在参与者之间是相同的,那么行为预测显然会很差。因此,我们假设去除参与者之间共享的常见静息态功能磁共振成像(rs-fMRI)信号将提高行为预测的能力。在这里,我们考虑了来自人类连接组计划(HCP)的 803 名参与者,他们有 4 次 rs-fMRI 运行。我们应用公共和正交基提取(COBE)技术将每个 HCP 运行分解为两个子空间:一个共同的(组水平)子空间,该子空间在所有参与者之间共享,以及一个特定于主体的子空间。我们发现,第一 HCP 运行的第一个公共 COBE 分量定位于视觉皮层,并且是该运行特有的。另一方面,第一 HCP 运行的第二个公共 COBE 分量和其余 HCP 运行的第一个公共 COBE 分量高度相似,定位于默认网络内的区域,包括后扣带皮层和楔前叶。总体而言,这表明存在参与者之间共享的运行特异性(状态特异性)效应。通过从第一 HCP 运行中去除第一和第二公共 COBE 分量,以及从其余 HCP 运行中去除第一公共 COBE 分量,由此产生的 RSFC 提高了 58 项认知、情感和人格行为测量的行为预测能力,平均提高了 11.7%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验