Suppr超能文献

负泊松比超双功能生物材料的力学性能

Mechanical performance of auxetic meta-biomaterials.

作者信息

Kolken H M A, Lietaert K, van der Sloten T, Pouran B, Meynen A, Van Loock G, Weinans H, Scheys L, Zadpoor A A

机构信息

Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.

3D Systems - LayerWise NV, Leuven, Belgium.

出版信息

J Mech Behav Biomed Mater. 2020 Apr;104:103658. doi: 10.1016/j.jmbbm.2020.103658. Epub 2020 Jan 30.

Abstract

The innovative design of orthopedic implants could play an important role in the development of life-lasting implants, by improving both primary and secondary implant fixations. The concept of meta-biomaterials aims to achieve a unique combination of mechanical, mass transport, and biological properties through optimized topological design of additively manufactured (AM) porous biomaterials. In this study, we primarily focused on a specific class of meta-biomaterials, namely auxetic meta-biomaterials. Their extraordinary behavior of lateral expansion in response to axial tension could potentially improve implant-bone contact in certain orthopedic applications. In this work, a multitude of auxetic meta-biomaterials were rationally designed and printed from Ti-6Al-4V using a commercially available laser powder bed fusion process called selective laser melting. The re-entrant hexagonal honeycomb unit cell was used as a starting point, which was then parametrically tuned to obtain a variety of mechanical and morphological properties. In this two-step study, the morphology and quasi-static properties of the developed meta-biomaterials were assessed using mechanical experiments accompanied with full-field strain measurements using digital image correlation. In addition, all our designs were computationally modelled using the finite element method. Our results showed the limits of the AM processes for the production of auxetic meta-biomaterials in terms of which values of the design parameters (e.g., re-entrant angle, relative density, and aspect ratio) could be successfully manufactured. We also found that the AM process itself imparts significant influence on the morphological and mechanical properties of the resulting auxetic meta-biomaterials. This further highlights the importance of experimental studies to determine the actual mechanical properties of such metamaterials. The elastic modulus and strength of many of our designs fell within the range of those reported for both trabecular and cortical bone. Unprecedented properties like these could be used to simultaneously address the different challenges faced in the mechanical design of orthopedic implants.

摘要

骨科植入物的创新设计可以通过改善初次和二次植入物固定,在耐用植入物的发展中发挥重要作用。超材料生物材料的概念旨在通过对增材制造(AM)多孔生物材料进行优化拓扑设计,实现机械、传质和生物学特性的独特组合。在本研究中,我们主要关注一类特定的超材料生物材料,即负泊松比超材料生物材料。它们在轴向拉伸时的异常横向膨胀行为可能会在某些骨科应用中改善植入物与骨的接触。在这项工作中,使用一种名为选择性激光熔化的商用激光粉末床熔融工艺,从Ti-6Al-4V合理设计并打印了多种负泊松比超材料生物材料。以重入式六边形蜂窝单胞为起点,然后对其进行参数调整,以获得各种机械和形态特性。在这个两步研究中,使用机械实验并结合数字图像相关的全场应变测量,评估了所开发的超材料生物材料的形态和准静态特性。此外,我们所有的设计都使用有限元方法进行了计算建模。我们的结果显示了在生产负泊松比超材料生物材料方面增材制造工艺的局限性,即哪些设计参数值(例如,重入角、相对密度和纵横比)可以成功制造。我们还发现增材制造工艺本身对所得负泊松比超材料生物材料的形态和机械性能有重大影响。这进一步凸显了实验研究对于确定此类超材料实际机械性能的重要性。我们许多设计的弹性模量和强度都落在了报道的小梁骨和皮质骨的范围内。像这样前所未有的特性可用于同时应对骨科植入物机械设计中面临的不同挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验