Lvov Vladislav A, Senatov Fedor S, Veveris Alnis A, Skrybykina Vitalina A, Díaz Lantada Andrés
Center for Biomedical Engineering, National University of Science and Technology "MISIS", Leninskiy pr. 4s1, 119049 Moscow, Russia.
Department of Mechanical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain.
Materials (Basel). 2022 Feb 15;15(4):1439. doi: 10.3390/ma15041439.
Auxetic metamaterials are characterized by a negative Poisson ratio (NPR) and display an unexpected property of lateral expansion when stretched and densification when compressed. Auxetic properties can be achieved by designing special microstructures, hence their classification as metamaterials, and can be manufactured with varied raw materials and methods. Since work in this field began, auxetics have been considered for different biomedical applications, as some biological tissues have auxetic-like behaviour due to their lightweight structure and morphing properties, which makes auxetics ideal for interacting with the human body. This research study is developed with the aim of presenting an updated overview of auxetic metamaterials for biomedical devices. It stands out for providing a comprehensive view of medical applications for auxetics, including a focus on prosthetics, orthotics, ergonomic appliances, performance enhancement devices, in vitro medical devices for interacting with cells, and advanced medicinal clinical products, especially tissue engineering scaffolds with living cells. Innovative design and simulation approaches for the engineering of auxetic-based products are covered, and the relevant manufacturing technologies for prototyping and producing auxetics are analysed, taking into consideration those capable of processing biomaterials and enabling multi-scale and multi-material auxetics. An engineering design rational for auxetics-based medical devices is presented with integrative purposes. Finally, key research, development and expected technological breakthroughs are discussed.
拉胀超材料的特征是具有负泊松比(NPR),并且在拉伸时呈现出意想不到的横向膨胀特性,在压缩时则呈现致密化特性。通过设计特殊的微观结构可以实现拉胀特性,因此它们被归类为超材料,并且可以使用各种原材料和方法进行制造。自该领域的研究开始以来,拉胀材料就被考虑用于不同的生物医学应用,因为一些生物组织由于其轻质结构和变形特性而具有类似拉胀的行为,这使得拉胀材料成为与人体相互作用的理想选择。本研究旨在提供关于用于生物医学设备的拉胀超材料的最新综述。它的突出之处在于全面介绍了拉胀材料的医学应用,包括对假肢、矫形器、人体工程学器具、性能增强设备、与细胞相互作用的体外医疗设备以及先进的药用临床产品,特别是带有活细胞的组织工程支架的关注。涵盖了基于拉胀材料的产品工程的创新设计和模拟方法,并分析了用于制作拉胀材料原型和生产拉胀材料的相关制造技术,同时考虑了那些能够加工生物材料并实现多尺度和多材料拉胀材料的技术。提出了基于拉胀材料的医疗设备的工程设计原理,以实现综合目的。最后,讨论了关键研究、开发和预期的技术突破。