Zhu Yanyu, Balaji Ashwin, Han Mengting, Andronov Leonid, Roy Anish R, Wei Zheng, Chen Crystal, Miles Leanne, Cai Sa, Gu Zhengxi, Tse Ariana, Yu Betty Chentzu, Uenaka Takeshi, Lin Xueqiu, Spakowitz Andrew J, Moerner W E, Qi Lei S
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Biophysics PhD Program, Stanford University, Stanford, CA 94305, USA.
Cell. 2025 Jun 12;188(12):3310-3328.e27. doi: 10.1016/j.cell.2025.03.032. Epub 2025 Apr 15.
Three-dimensional (3D) genome dynamics are crucial for cellular functions and disease. However, real-time, live-cell DNA visualization remains challenging, as existing methods are often confined to repetitive regions, suffer from low resolution, or require complex genome engineering. Here, we present Oligo-LiveFISH, a high-resolution, reagent-based platform for dynamically tracking non-repetitive genomic loci in diverse cell types, including primary cells. Oligo-LiveFISH utilizes fluorescent guide RNA (gRNA) oligo pools generated by computational design, in vitro transcription, and chemical labeling, delivered as ribonucleoproteins. Utilizing machine learning, we characterized the impact of gRNA design and chromatin features on imaging efficiency. Multi-color Oligo-LiveFISH achieved 20-nm spatial resolution and 50-ms temporal resolution in 3D, capturing real-time enhancer and promoter dynamics. Our measurements and dynamic modeling revealed two distinct modes of chromatin communication, and active transcription slows enhancer-promoter dynamics at endogenous genes like FOS. Oligo-LiveFISH offers a versatile platform for studying 3D genome dynamics and their links to cellular processes and disease.
三维(3D)基因组动态变化对细胞功能和疾病至关重要。然而,实时、活细胞DNA可视化仍然具有挑战性,因为现有方法通常局限于重复区域,分辨率较低,或者需要复杂的基因组工程。在此,我们展示了Oligo-LiveFISH,这是一个基于试剂的高分辨率平台,用于动态追踪包括原代细胞在内的多种细胞类型中的非重复基因组位点。Oligo-LiveFISH利用通过计算设计、体外转录和化学标记产生的荧光引导RNA(gRNA)寡核苷酸池,以核糖核蛋白的形式递送。利用机器学习,我们表征了gRNA设计和染色质特征对成像效率的影响。多色Oligo-LiveFISH在三维空间中实现了20纳米的空间分辨率和50毫秒的时间分辨率,捕捉到了增强子和启动子的实时动态变化。我们的测量和动态建模揭示了两种不同的染色质通讯模式,并且活跃转录减缓了内源性基因(如FOS)处增强子与启动子之间的动态变化。Oligo-LiveFISH为研究三维基因组动态变化及其与细胞过程和疾病的联系提供了一个通用平台。