Suppr超能文献

具有高亲和力和选择性的配体结合蛋白的计算设计。

Computational design of ligand-binding proteins with high affinity and selectivity.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Nature. 2013 Sep 12;501(7466):212-216. doi: 10.1038/nature12443. Epub 2013 Sep 4.

Abstract

The ability to design proteins with high affinity and selectivity for any given small molecule is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition. Attempts to rationally design ligand-binding proteins have met with little success, however, and the computational design of protein-small-molecule interfaces remains an unsolved problem. Current approaches for designing ligand-binding proteins for medical and biotechnological uses rely on raising antibodies against a target antigen in immunized animals and/or performing laboratory-directed evolution of proteins with an existing low affinity for the desired ligand, neither of which allows complete control over the interactions involved in binding. Here we describe a general computational method for designing pre-organized and shape complementary small-molecule-binding sites, and use it to generate protein binders to the steroid digoxigenin (DIG). Of seventeen experimentally characterized designs, two bind DIG; the model of the higher affinity binder has the most energetically favourable and pre-organized interface in the design set. A comprehensive binding-fitness landscape of this design, generated by library selections and deep sequencing, was used to optimize its binding affinity to a picomolar level, and X-ray co-crystal structures of two variants show atomic-level agreement with the corresponding computational models. The optimized binder is selective for DIG over the related steroids digitoxigenin, progesterone and β-oestradiol, and this steroid binding preference can be reprogrammed by manipulation of explicitly designed hydrogen-bonding interactions. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics and diagnostics.

摘要

设计与任何给定小分子具有高亲和力和选择性的蛋白质的能力是对我们理解控制分子识别的物理化学原理的严格考验。然而,理性设计配体结合蛋白的尝试收效甚微,并且蛋白质-小分子界面的计算设计仍然是一个未解决的问题。目前用于设计具有医学和生物技术用途的配体结合蛋白的方法依赖于在免疫动物中针对靶抗原产生抗体和/或对具有对所需配体低亲和力的现有蛋白质进行实验室定向进化,这两种方法都无法完全控制结合中涉及的相互作用。在这里,我们描述了一种用于设计预组织和形状互补的小分子结合位点的通用计算方法,并将其用于生成针对甾体地高辛(DIG)的蛋白质结合物。在十七个经过实验表征的设计中,有两个设计结合 DIG;在设计集中,具有较高亲和力结合物的模型具有最具能量优势和预组织的界面。通过文库选择和深度测序生成的该设计的综合结合适应性景观被用于将其结合亲和力优化至皮摩尔水平,并且两个变体的 X 射线共晶结构与相应的计算模型在原子水平上一致。优化后的结合物对 DIG 具有选择性,优于相关甾体Digitoxigenin、Progesterone 和β-雌二醇,并且通过操纵明确设计的氢键相互作用可以重新编程这种甾体结合偏好。此处提出的计算设计方法应该能够开发新一代的生物传感器、治疗剂和诊断剂。

相似文献

1
Computational design of ligand-binding proteins with high affinity and selectivity.
Nature. 2013 Sep 12;501(7466):212-216. doi: 10.1038/nature12443. Epub 2013 Sep 4.
5
Computational Design of Ligand Binding Proteins.
Methods Mol Biol. 2017;1529:363-373. doi: 10.1007/978-1-4939-6637-0_19.
6
CSAR Benchmark Exercise 2013: Evaluation of Results from a Combined Computational Protein Design, Docking, and Scoring/Ranking Challenge.
J Chem Inf Model. 2016 Jun 27;56(6):1022-31. doi: 10.1021/acs.jcim.5b00387. Epub 2015 Oct 9.
7
Computational design of affinity and specificity at protein-protein interfaces.
Curr Opin Struct Biol. 2009 Aug;19(4):458-63. doi: 10.1016/j.sbi.2009.07.005. Epub 2009 Jul 29.
8
Binding pocket optimization by computational protein design.
PLoS One. 2012;7(12):e52505. doi: 10.1371/journal.pone.0052505. Epub 2012 Dec 27.
9
Recent developments in structure-based drug design.
J Mol Med (Berl). 2000;78(5):269-81. doi: 10.1007/s001090000084.

引用本文的文献

1
Variant scoring tools for deep mutational scanning.
Mol Syst Biol. 2025 Aug 8. doi: 10.1038/s44320-025-00137-x.
3
Design of nanobody targeting SARS-CoV-2 spike glycoprotein using CDR-grafting assisted by molecular simulation and machine learning.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012921. doi: 10.1371/journal.pcbi.1012921. eCollection 2025 Apr.
4
Assembly and Functionality of 2D Protein Arrays.
Adv Sci (Weinh). 2025 Apr;12(15):e2416485. doi: 10.1002/advs.202416485. Epub 2025 Mar 16.
5
De Novo Design of Proteins That Bind Naphthalenediimides, Powerful Photooxidants with Tunable Photophysical Properties.
J Am Chem Soc. 2025 Mar 5;147(9):7849-7858. doi: 10.1021/jacs.4c18151. Epub 2025 Feb 21.
6
Emergence of specific binding and catalysis from a designed generalist binding protein.
bioRxiv. 2025 Mar 19:2025.01.30.635804. doi: 10.1101/2025.01.30.635804.
7
De novo design of transmembrane fluorescence-activating proteins.
Nature. 2025 Apr;640(8057):249-257. doi: 10.1038/s41586-025-08598-8. Epub 2025 Feb 19.
9
A cell-free biosensor signal amplification circuit with polymerase strand recycling.
Nat Chem Biol. 2025 Jan 13. doi: 10.1038/s41589-024-01816-w.
10
Binding and sensing diverse small molecules using shape-complementary pseudocycles.
Science. 2024 Jul 19;385(6706):276-282. doi: 10.1126/science.adn3780. Epub 2024 Jul 18.

本文引用的文献

1
Emerging themes in the computational design of novel enzymes and protein-protein interfaces.
FEBS Lett. 2013 Apr 17;587(8):1147-54. doi: 10.1016/j.febslet.2012.12.009. Epub 2012 Dec 19.
2
The spatial architecture of protein function and adaptation.
Nature. 2012 Nov 1;491(7422):138-42. doi: 10.1038/nature11500. Epub 2012 Oct 7.
3
Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10358-63. doi: 10.1073/pnas.1121063109. Epub 2012 Jun 8.
5
Role of the biomolecular energy gap in protein design, structure, and evolution.
Cell. 2012 Apr 13;149(2):262-73. doi: 10.1016/j.cell.2012.03.016.
6
Vaccines against drug abuse.
Clin Pharmacol Ther. 2012 Jan;91(1):60-70. doi: 10.1038/clpt.2011.281. Epub 2011 Nov 30.
7
Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design.
J Mol Biol. 2012 Jan 20;415(3):615-25. doi: 10.1016/j.jmb.2011.10.043. Epub 2011 Nov 3.
8
Enrich: software for analysis of protein function by enrichment and depletion of variants.
Bioinformatics. 2011 Dec 15;27(24):3430-1. doi: 10.1093/bioinformatics/btr577. Epub 2011 Oct 17.
9
RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite.
PLoS One. 2011;6(6):e20161. doi: 10.1371/journal.pone.0020161. Epub 2011 Jun 24.
10
De novo enzyme design using Rosetta3.
PLoS One. 2011;6(5):e19230. doi: 10.1371/journal.pone.0019230. Epub 2011 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验