Grantham Institute, Imperial College London, London, SW7 2AZ, UK.
Department of Physics, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
Nat Commun. 2020 Mar 16;11(1):1415. doi: 10.1038/s41467-020-15195-y.
Global climate models are central tools for understanding past and future climate change. The assessment of model skill, in turn, can benefit from modern data science approaches. Here we apply causal discovery algorithms to sea level pressure data from a large set of climate model simulations and, as a proxy for observations, meteorological reanalyses. We demonstrate how the resulting causal networks (fingerprints) offer an objective pathway for process-oriented model evaluation. Models with fingerprints closer to observations better reproduce important precipitation patterns over highly populated areas such as the Indian subcontinent, Africa, East Asia, Europe and North America. We further identify expected model interdependencies due to shared development backgrounds. Finally, our network metrics provide stronger relationships for constraining precipitation projections under climate change as compared to traditional evaluation metrics for storm tracks or precipitation itself. Such emergent relationships highlight the potential of causal networks to constrain longstanding uncertainties in climate change projections.
全球气候模型是理解过去和未来气候变化的核心工具。模型技能的评估反过来又可以受益于现代数据科学方法。在这里,我们将因果发现算法应用于来自大量气候模型模拟的海平面气压数据,并将气象再分析作为观测的代理。我们展示了由此产生的因果网络(指纹)如何为面向过程的模型评估提供客观途径。指纹与观测更接近的模型更好地再现了印度次大陆、非洲、东亚、欧洲和北美的人口密集地区等重要降水模式。我们还确定了由于共享开发背景而导致的预期模型相互依赖性。最后,与传统的风暴轨迹或降水本身的评估指标相比,我们的网络指标为约束气候变化下的降水预测提供了更强的关系。这种新兴关系突显了因果网络在约束气候变化预测中存在的长期不确定性方面的潜力。