Kornfuehrer Taylor, Eustáquio Alessandra S
Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . Email:
Medchemcomm. 2019 May 10;10(8):1256-1272. doi: 10.1039/c9md00141g. eCollection 2019 Aug 1.
Polyketide natural products possess diverse biological activities including antibiotic, anticancer, and immunosuppressive. Their equally varied and complex structures arise from head-to-tail condensation of simple carboxyacyl monomers. Since the seminal discovery that biosynthesis of polyketides such as the macrolide erythromycin is catalyzed by uncharacteristically large, multifunctional enzymes, termed modular type I polyketide synthases, chemists and biologists alike have been inspired to harness the apparent modularity of the synthases to further diversify polyketide structures. Yet, initial attempts to perform "combinatorial biosynthesis" failed due to challenges associated with maintaining the structural and catalytic integrity of large, chimeric synthases. Fast forward nearly 30 years, and advancements in our understanding of polyketide synthase structure and function have allowed the field to make significant progress toward effecting desired modifications to polyketide scaffolds in addition to engineering small, chiral fragments. This review highlights selected examples of polyketide diversification control of monomer selection, oxidation state, stereochemistry, and cyclization. We conclude with a perspective on the present and future of polyketide structure diversification and hope that the examples presented here will encourage medicinal chemists to embrace polyketide synthetic biology as a means to revitalize polyketide drug discovery.
聚酮类天然产物具有多种生物活性,包括抗菌、抗癌和免疫抑制。它们同样多样而复杂的结构源于简单羧基酰基单体的头尾缩合。自从首次发现诸如大环内酯类红霉素等聚酮类化合物的生物合成是由异常大的多功能酶(称为模块化I型聚酮合酶)催化以来,化学家和生物学家都受到启发,利用这些合酶明显的模块化特性来进一步使聚酮类化合物的结构多样化。然而,最初进行“组合生物合成”的尝试由于在维持大型嵌合合酶的结构和催化完整性方面存在挑战而失败。快进近30年,随着我们对聚酮合酶结构和功能认识的进步,该领域除了对小的手性片段进行工程改造外,在对聚酮类化合物骨架进行所需修饰方面也取得了重大进展。本综述重点介绍了聚酮类化合物多样化的选定实例,包括单体选择、氧化态、立体化学和环化的控制。我们最后展望了聚酮类化合物结构多样化的现状和未来,并希望这里介绍的实例将鼓励药物化学家接受聚酮类合成生物学,以此作为振兴聚酮类药物发现的一种手段。