Heidary Nina, Kornienko Nikolay
Department of Chemistry , Université de Montréal , Roger-Gaudry Building , Montreal , Quebec H3C 3J7 , Canada . Email:
Chem Sci. 2020 Feb 4;11(7):1798-1806. doi: 10.1039/d0sc00136h. eCollection 2020 Feb 21.
The electrochemical oxidation of biomass platforms such as 5-hydroxymethylfurfural (HMF) to value-added chemicals is an emerging clean energy technology. However, mechanistic knowledge of this reaction in an electrochemical context is still lacking and studies are even more rare. In this work, we utilize core-shell gold-metal oxide nanostructures which enable surface-enhanced Raman spectroelectrochemical studies to simultaneously visualize catalyst material transformation and surface reaction intermediates under an applied voltage. As a case study, we show how the transformation of NiOOH from ∼1-2 nm amorphous Ni layers facilitates the onset of HMF oxidation to 2,5-furandicarboxylic acid (FDCA), which is attained with 99% faradaic efficiency in 1 M KOH. In contrast to the case in 1 M KOH, NiOOH formation is suppressed, and consequently HMF oxidation is sluggish in 10 mM KOH, even at highly oxidizing potentials. Raman experiments elucidate how surface adsorption and interaction dictates product selectivity and how the surface intermediates evolve with applied potential. We further extend our methodology to investigate NiFe, Co, Fe, and CoFe catalysts and demonstrate that high water oxidation activity is not necessarily correlated with excellent HMF oxidation performance and highlight catalytic factors important for this reaction such as reactant-surface interactions and the catalysts' physical and electronic structure. The insights extracted are expected to pave the way for a deepened understanding of a wide array of electrochemical systems such as for organic transformations and CO fixation.
将生物质平台(如5-羟甲基糠醛,HMF)电化学氧化为高附加值化学品是一种新兴的清洁能源技术。然而,在电化学背景下,关于该反应的机理知识仍然匮乏,相关研究更是稀少。在这项工作中,我们利用核壳结构的金-金属氧化物纳米结构,通过表面增强拉曼光谱电化学研究,在施加电压下同时可视化催化剂材料的转变和表面反应中间体。作为一个案例研究,我们展示了约1-2纳米非晶态镍层中的NiOOH转变如何促进HMF氧化为2,5-呋喃二甲酸(FDCA),在1 M KOH中该反应的法拉第效率达到99%。与在1 M KOH中的情况相反,在10 mM KOH中,NiOOH的形成受到抑制,因此即使在高氧化电位下,HMF氧化也很缓慢。拉曼实验阐明了表面吸附和相互作用如何决定产物选择性,以及表面中间体如何随施加电位演变。我们进一步扩展了我们的方法,以研究NiFe、Co、Fe和CoFe催化剂,并证明高析氧活性不一定与优异的HMF氧化性能相关,同时突出了该反应重要的催化因素,如反应物-表面相互作用以及催化剂的物理和电子结构。预计所提取的见解将为深入理解一系列电化学系统(如有机转化和CO固定)铺平道路。