Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada.
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
Nature. 2016 Sep 15;537(7620):382-386. doi: 10.1038/nature19060. Epub 2016 Aug 3.
Electrochemical reduction of carbon dioxide (CO) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO surrounding typical CO reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO adsorption, but this comes at the cost of increased hydrogen (H) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO close to the active CO reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.
电化学还原二氧化碳(CO)为一氧化碳(CO)是利用可再生电力合成更复杂碳基燃料和原料的第一步。不幸的是,由于典型的 CO 还原反应催化剂周围 CO 的局部浓度低,反应动力学缓慢。已知碱金属阳离子通过与吸附试剂物种的非共价相互作用克服了这一限制,但这种效果受到相关盐溶解度的限制。施加较大的电极电势也可以增强 CO 的吸附,但这是以增加氢气(H)析出为代价的。在这里,我们报告说,在低施加过电势下,纳米结构电极会产生局部强电场,使电解质阳离子集中,从而导致靠近活性 CO 还原反应表面的 CO 局部浓度升高。模拟表明,与准平面电极区域相比,金属纳米尺寸尖端的电场高十倍,使用金纳米针的测量结果证实了一种电场诱导的试剂浓度,使 CO 还原反应能够以 22 毫安/平方厘米的几何电流密度进行,CO 的过电势为 -0.35 伏特(过电势为 0.24 伏特)。这种性能超过了最佳金纳米棒、纳米颗粒和氧化物衍生的贵金属催化剂的性能一个数量级。同样设计的钯纳米针电催化剂以超过 90%的法拉第效率生成甲酸盐,并且在 -0.2 伏特时,甲酸盐的几何电流密度达到前所未有的 10 毫安/平方厘米,证明了电场诱导的试剂浓度概念的更广泛适用性。