Suppr超能文献

探索肺癌诊断中的新技术:我们还有改进的空间吗?

Exploring Novel Technologies in Lung Cancer Diagnosis: Do We Have Room for Improvement?

作者信息

Sharma Munish, Surani Salim

机构信息

Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA.

Internal Medicine, Texas A&M Health Science Center, Bryan, USA.

出版信息

Cureus. 2020 Jan 31;12(1):e6828. doi: 10.7759/cureus.6828.

Abstract

Lung cancer remains the leading cause of cancer-related death worldwide. Preventive strategies, mainly smoking cessation have a big impact on the reduction of lung cancer-related mortality. Screening with low dose computed tomography (LDCT) has proven to be beneficial in reducing the mortality related to lung cancer mainly based on early detection of cancer and timely initiation of treatment. Despite its beneficial effects, guideline-directed LDCT screening could lead to high false positive results, subjecting patients to harmful radiation, increase cost of healthcare and induce anxiety amongst the patients. Thus, it is imperative to look beyond the prevailing modalities of lung cancer screening and diagnosis to achieve better yield and mitigate the existent drawbacks.

摘要

肺癌仍然是全球癌症相关死亡的主要原因。预防策略,主要是戒烟,对降低肺癌相关死亡率有很大影响。低剂量计算机断层扫描(LDCT)筛查已被证明有助于降低肺癌相关死亡率,主要是基于癌症的早期发现和及时开始治疗。尽管有这些益处,但遵循指南的LDCT筛查可能会导致高假阳性结果,使患者受到有害辐射,增加医疗成本,并引起患者焦虑。因此,有必要超越现有的肺癌筛查和诊断模式,以获得更好的效果并减轻现有缺点。

相似文献

2
5
Lung cancer screening.肺癌筛查
Semin Intervent Radiol. 2013 Jun;30(2):114-20. doi: 10.1055/s-0033-1342951.
6

本文引用的文献

2
Cancer statistics, 2019.癌症统计数据,2019 年。
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验