Suppr超能文献

一种用于评估人群急诊科就诊严重程度的修订分类算法。

A revised classification algorithm for assessing emergency department visit severity of populations.

机构信息

Center for Population Health Information Technology, Department of Health Policy and Management, The Johns Hopkins University Bloomberg School of Public Health, 624 N Broadway, Room 601, Baltimore, MD 21205. Email:

出版信息

Am J Manag Care. 2020 Mar;26(3):119-125. doi: 10.37765/ajmc.2020.42636.

Abstract

OBJECTIVES

Analyses of emergency department (ED) use require visit classification algorithms based on administrative data. Our objectives were to present an expanded and revised version of an existing algorithm and to use this tool to characterize patterns of ED use across US hospitals and within a large sample of health plan enrollees.

STUDY DESIGN

Observational study using National Hospital Ambulatory Medical Care Survey ED public use files and hospital billing data for a health plan cohort.

METHODS

Our Johns Hopkins University (JHU) team classified many uncategorized diagnosis codes into existing New York University Emergency Department Algorithm (NYU-EDA) categories and added 3 severity levels to the injury category. We termed this new algorithm the NYU/JHU-EDA. We then compared visit distributions across these 2 algorithms and 2 other previous revised versions of the NYU-EDA using our 2 data sources.

RESULTS

Applying the newly developed NYU/JHU-EDA, we classified 99% of visits. Based on our analyses, it is evident that an even greater number of US ED visits than categorized by the NYU-EDA are nonemergent. For the first time, we provide a more complete picture of the level of severity among patients treated for injuries within US hospital EDs, with about 86% of such visits being nonsevere. Also, both the original and updated classification tools suggest that, of the 38% of ED visits that are clinically emergent, the majority either do not require ED resources or could have been avoided with better primary care.

CONCLUSIONS

The updated NYU/JHU-EDA taxonomy appears to offer cogent retrospective inferences about population-level ED utilization.

摘要

目的

分析急诊科(ED)就诊需要基于行政数据的就诊分类算法。我们的目的是提出一个现有的算法的扩展和修订版本,并使用该工具来描述美国医院和大型健康计划参保人群中 ED 就诊模式。

研究设计

使用国家医院门诊医疗调查 ED 公共使用文件和健康计划队列的医院计费数据进行观察性研究。

方法

我们的约翰霍普金斯大学(JHU)团队将许多未分类的诊断代码归入现有的纽约大学急诊科算法(NYU-EDA)类别,并在损伤类别中添加了 3 个严重程度级别。我们将这个新算法命名为 NYU/JHU-EDA。然后,我们使用我们的两个数据源比较了这两个算法和 NYU-EDA 的另外两个以前修订版本的就诊分布情况。

结果

应用新开发的 NYU/JHU-EDA,我们对 99%的就诊进行了分类。根据我们的分析,显然比 NYU-EDA 分类的非紧急就诊数量更多。我们首次提供了一个更完整的美国医院急诊科治疗损伤患者严重程度的情况,其中约 86%的此类就诊是非严重的。此外,原始和更新的分类工具都表明,在 38%的临床紧急 ED 就诊中,大多数要么不需要 ED 资源,要么可以通过更好的初级保健来避免。

结论

更新后的 NYU/JHU-EDA 分类法似乎可以对人群层面的 ED 使用情况进行合理的回顾性推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验