Suppr超能文献

基于双向长短时记忆网络的 EEG 信号空间插值方法。

A Method for the Spatial Interpolation of EEG Signals Based on the Bidirectional Long Short-Term Memory Network.

机构信息

The College of Information Science and Technology, Donghua University, Shanghai 200051, China.

The Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710060, China.

出版信息

Sensors (Basel). 2024 Aug 12;24(16):5215. doi: 10.3390/s24165215.

Abstract

The precision of electroencephalograms (EEGs) significantly impacts the performance of brain-computer interfaces (BCI). Currently, the majority of research into BCI technology gives priority to lightweight design and a reduced electrode count to make it more suitable for application in wearable environments. This paper introduces a deep learning-based time series bidirectional (BiLSTM) network that is designed to capture the inherent characteristics of EEG channels obtained from neighboring electrodes. It aims to predict the EEG data time series and facilitate the conversion process from low-density EEG signals to high-density EEG signals. BiLSTM pays more attention to the dependencies in time series data rather than mathematical maps, and the root mean square error can be effectively restricted to below 0.4μV, which is less than half the error in traditional methods. After expanding the BCI Competition III 3a dataset from 18 channels to 60 channels, we conducted classification experiments on four types of motor imagery tasks. Compared to the original low-density EEG signals (18 channels), the classification accuracy was around 82%, an increase of about 20%. When juxtaposed with real high-density signals, the increment in the error rate remained below 5%. The expansion of the EEG channels showed a substantial and notable improvement compared with the original low-density signals.

摘要

脑电图(EEG)的精度对脑机接口(BCI)的性能有重大影响。目前,大多数 BCI 技术的研究都优先考虑轻量级设计和减少电极数量,以使其更适合可穿戴环境的应用。本文介绍了一种基于深度学习的时间序列双向(BiLSTM)网络,旨在捕捉来自相邻电极的 EEG 通道的固有特征。它旨在预测 EEG 数据时间序列,并促进从低密度 EEG 信号到高密度 EEG 信号的转换过程。BiLSTM 更关注时间序列数据中的依赖关系,而不是数学映射,均方根误差可以有效地限制在 0.4μV 以下,不到传统方法的一半。在将 BCI 竞赛 III 3a 数据集从 18 通道扩展到 60 通道后,我们对四种运动想象任务进行了分类实验。与原始低密度 EEG 信号(18 通道)相比,分类准确率约为 82%,提高了约 20%。与真实的高密度信号相比,误差率的增加仍保持在 5%以下。与原始低密度信号相比,EEG 通道的扩展有了显著的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b248/11359714/03fd7930c2ab/sensors-24-05215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验