Suppr超能文献

使用 DNA 编码化学文库鉴定耐碳青霉烯酶-48 型β-内酰胺酶抑制剂。

Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries.

机构信息

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States.

Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030, United States.

出版信息

ACS Infect Dis. 2020 May 8;6(5):1214-1227. doi: 10.1021/acsinfecdis.0c00015. Epub 2020 Mar 25.

Abstract

Bacterial resistance to β-lactam antibiotics is largely mediated by β-lactamases, which catalyze the hydrolysis of these drugs and continue to emerge in response to antibiotic use. β-Lactamases that hydrolyze the last resort carbapenem class of β-lactam antibiotics (carbapenemases) are a growing global health threat. Inhibitors have been developed to prevent β-lactamase-mediated hydrolysis and restore the efficacy of these antibiotics. However, there are few inhibitors available for problematic carbapenemases such as oxacillinase-48 (OXA-48). A DNA-encoded chemical library approach was used to rapidly screen for compounds that bind and potentially inhibit OXA-48. Using this approach, a hit compound, CDD-97, was identified with submicromolar potency ( = 0.53 ± 0.08 μM) against OXA-48. X-ray crystallography showed that CDD-97 binds noncovalently in the active site of OXA-48. Synthesis and testing of derivatives of CDD-97 revealed structure-activity relationships and informed the design of a compound with a 2-fold increase in potency. CDD-97, however, synergizes poorly with β-lactam antibiotics to inhibit the growth of bacteria expressing OXA-48 due to poor accumulation into . Despite the low activity, CDD-97 provides new insights into OXA-48 inhibition and demonstrates the potential of using DNA-encoded chemistry technology to rapidly identify β-lactamase binders and to study β-lactamase inhibition, leading to clinically useful inhibitors.

摘要

细菌对β-内酰胺类抗生素的耐药性主要由β-内酰胺酶介导,这些酶催化这些药物的水解,并继续在抗生素的使用下出现。能够水解β-内酰胺类抗生素最后一道防线(碳青霉烯类抗生素)的β-内酰胺酶(碳青霉烯酶)是一个日益严重的全球健康威胁。已经开发了抑制剂来防止β-内酰胺酶介导的水解并恢复这些抗生素的疗效。然而,对于一些有问题的碳青霉烯酶,如耐甲氧西林酶-48(OXA-48),可用的抑制剂很少。采用 DNA 编码的化学文库方法快速筛选与潜在结合并抑制 OXA-48 的化合物。使用这种方法,鉴定出一个命中化合物 CDD-97,对 OXA-48 的抑制活性为亚微摩尔级(= 0.53 ± 0.08 μM)。X 射线晶体学显示 CDD-97 以非共价方式结合在 OXA-48 的活性部位。CDD-97 的衍生物的合成和测试揭示了构效关系,并为一种效力提高 2 倍的化合物的设计提供了信息。然而,由于在细菌中积累较差,CDD-97 与β-内酰胺类抗生素协同作用较差,不能抑制表达 OXA-48 的细菌的生长。尽管活性较低,但 CDD-97 为 OXA-48 的抑制提供了新的见解,并证明了使用 DNA 编码化学技术快速鉴定β-内酰胺酶结合物并研究β-内酰胺酶抑制作用以获得临床有用的抑制剂的潜力。

相似文献

1
Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries.
ACS Infect Dis. 2020 May 8;6(5):1214-1227. doi: 10.1021/acsinfecdis.0c00015. Epub 2020 Mar 25.
2
Cyclic Boronates Inhibit All Classes of β-Lactamases.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02260-16. Print 2017 Apr.
4
Exploiting the Carboxylate-Binding Pocket of β-Lactamase Enzymes Using a Focused DNA-Encoded Chemical Library.
J Med Chem. 2024 Jan 11;67(1):620-642. doi: 10.1021/acs.jmedchem.3c01834. Epub 2023 Dec 20.
5
Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of Producing OXA-48.
ACS Infect Dis. 2021 Dec 10;7(12):3345-3354. doi: 10.1021/acsinfecdis.1c00501. Epub 2021 Nov 24.
6
C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Carbapenemase OXA-23 by Impeding Deacylation.
mBio. 2022 Jun 28;13(3):e0036722. doi: 10.1128/mbio.00367-22. Epub 2022 Apr 14.
7
Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01172-17. Print 2017 Nov.
8
Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase.
Protein Sci. 2017 Mar;26(3):515-526. doi: 10.1002/pro.3100. Epub 2017 Feb 23.

引用本文的文献

1
The power of DNA-encoded chemical libraries in the battle against drug-resistant bacteria.
RSC Adv. 2025 Apr 30;15(18):14001-14029. doi: 10.1039/d5ra00016e. eCollection 2025 Apr 28.
2
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2435365. doi: 10.1080/14756366.2024.2435365. Epub 2024 Dec 23.
3
Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors.
J Am Chem Soc. 2024 Dec 11;146(49):33983-33996. doi: 10.1021/jacs.4c12992. Epub 2024 Nov 22.
4
Drug Discovery in the Field of β-Lactams: An Academic Perspective.
Antibiotics (Basel). 2024 Jan 8;13(1):59. doi: 10.3390/antibiotics13010059.
5
Exploiting the Carboxylate-Binding Pocket of β-Lactamase Enzymes Using a Focused DNA-Encoded Chemical Library.
J Med Chem. 2024 Jan 11;67(1):620-642. doi: 10.1021/acs.jmedchem.3c01834. Epub 2023 Dec 20.
6
Design, Construction, and Screening of Diversified Pyrimidine-Focused DNA-Encoded Libraries.
ACS Med Chem Lett. 2023 Jul 27;14(8):1073-1078. doi: 10.1021/acsmedchemlett.3c00205. eCollection 2023 Aug 10.
7
Small-molecule discovery through DNA-encoded libraries.
Nat Rev Drug Discov. 2023 Sep;22(9):699-722. doi: 10.1038/s41573-023-00713-6. Epub 2023 Jun 16.
8
Using cancer proteomics data to identify gene candidates for therapeutic targeting.
Oncotarget. 2023 May 4;14:399-412. doi: 10.18632/oncotarget.28420.
9
Discovery of Highly Potent and BMPR2-Selective Kinase Inhibitors Using DNA-Encoded Chemical Library Screening.
J Med Chem. 2023 Feb 9;66(3):2143-2160. doi: 10.1021/acs.jmedchem.2c01886. Epub 2023 Jan 31.
10
DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output.
RSC Adv. 2021 Jan 19;11(4):2359-2376. doi: 10.1039/d0ra09889b. eCollection 2021 Jan 6.

本文引用的文献

1
Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections.
ACS Comb Sci. 2019 Feb 11;21(2):75-82. doi: 10.1021/acscombsci.8b00116. Epub 2019 Jan 23.
2
Role of the Hydrophobic Bridge in the Carbapenemase Activity of Class D β-Lactamases.
Antimicrob Agents Chemother. 2019 Jan 29;63(2). doi: 10.1128/AAC.02191-18. Print 2019 Feb.
3
Relebactam Is a Potent Inhibitor of the KPC-2 β-Lactamase and Restores Imipenem Susceptibility in KPC-Producing Enterobacteriaceae.
Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.00174-18. Print 2018 Jun.
6
Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01443-17. Print 2017 Nov.
7
Beta-lactamase database (BLDB) - structure and function.
J Enzyme Inhib Med Chem. 2017 Dec;32(1):917-919. doi: 10.1080/14756366.2017.1344235.
8
Predictive compound accumulation rules yield a broad-spectrum antibiotic.
Nature. 2017 May 18;545(7654):299-304. doi: 10.1038/nature22308. Epub 2017 May 10.
9
The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace.
J Infect Dis. 2017 Feb 15;215(suppl_1):S28-S36. doi: 10.1093/infdis/jiw282.
10
Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria.
Nat Microbiol. 2017 Feb 22;2:17001. doi: 10.1038/nmicrobiol.2017.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验