Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
Antimicrob Agents Chemother. 2019 Jan 29;63(2). doi: 10.1128/AAC.02191-18. Print 2019 Feb.
Class D carbapenemases are enzymes of the utmost clinical importance due to their ability to confer resistance to the last-resort carbapenem antibiotics. We investigated the role of the conserved hydrophobic bridge in the carbapenemase activity of OXA-23, the major carbapenemase of the important pathogen We show that substitution of the bridge residue Phe110 affects resistance to meropenem and doripenem and has little effect on MICs of imipenem. The opposite effect was observed upon substitution of the other bridge residue Met221. Complete disruption of the bridge by the F110A/M221A substitution resulted in a significant loss of affinity for doripenem and meropenem and to a lesser extent for imipenem, which is reflected in the reduced MICs of these antibiotics. In the wild-type OXA-23, the pyrrolidine ring of the meropenem tail forms a hydrophobic interaction with Phe110 of the bridge. Similar interactions would ensue with ring-containing doripenem but not with imipenem, which lacks this ring. Our structural studies showed that this interaction with the meropenem tail is missing in the F110A/M221A mutant. These data explain why disruption of the interaction between the enzyme and the carbapenem substrate impacts the affinity and MICs of meropenem and doripenem to a larger degree than those of imipenem. Our structures also show that the bridge directs the acylated carbapenem into a specific tautomeric conformation. However, it is not this conformation but rather the stabilizing interaction between the tail of the antibiotic and the hydrophobic bridge that contributes to the carbapenemase activity of class D β-lactamases.
D 类碳青霉烯酶由于能够赋予对最后一线碳青霉烯抗生素的耐药性,因此具有至关重要的临床意义。我们研究了保守疏水性桥在 OXA-23 碳青霉烯酶活性中的作用,OXA-23 是重要病原体的主要碳青霉烯酶。我们表明,桥残基苯丙氨酸 110 的取代会影响美罗培南和多利培南的耐药性,而对亚胺培南的 MICs 影响很小。相反,桥的另一个残基蛋氨酸 221 的取代会产生相反的效果。桥的完全破坏通过 F110A/M221A 取代导致对多利培南和美罗培南的亲和力显著丧失,对亚胺培南的亲和力降低程度较小,这反映在这些抗生素的 MIC 降低。在野生型 OXA-23 中,美罗培南尾链的吡咯烷环与桥的苯丙氨酸 110 形成疏水相互作用。类似的相互作用将伴随着含有环的多利培南发生,但与缺乏该环的亚胺培南则不会。我们的结构研究表明,这种与美罗培南尾链的相互作用在 F110A/M221A 突变体中缺失。这些数据解释了为什么破坏酶与碳青霉烯底物之间的相互作用会对美罗培南和多利培南的亲和力和 MICs 产生更大的影响,而对亚胺培南的影响则较小。我们的结构还表明,桥将酰化碳青霉烯引导至特定的互变异构构象。然而,不是这种构象,而是抗生素尾链与疏水性桥之间的稳定相互作用,有助于 D 类β-内酰胺酶的碳青霉烯酶活性。