Construction Technologies Institute, National Research Council of Italy (ITC-CNR), Via Lombardia, 49, 20098 San Giuliano Milanese, Italy.
SCS, Softcare Studios Srls, Via Franco Sacchetti, 52, 00137 Roma, Italy.
Sensors (Basel). 2020 Mar 14;20(6):1627. doi: 10.3390/s20061627.
Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated "smart" devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach the best level of indoor thermal comfort closest to the real needs of users. The article investigates the potential of a new approach aiming at evaluating the effect of visual stimuli on personal thermal comfort perception through a comparison of 25 participants' feedback exposed to a real scenario in a test cell and the same environment reproduced in Virtual Reality. The users' biometric data and feedback about their thermal perception along with environmental parameters are collected in a dataset and managed with different Machine Learning techniques. The most suitable algorithm, among those selected, and the influential variables to predict the Personal Thermal Comfort Perception are identified. The Extra Trees classifier emerged as the most useful algorithm in this specific case. In real and virtual scenarios, the most important variables that allow predicting the target value are identified with an average accuracy higher than 0.99.
个人热舒适模型将个人用户反馈作为目标值。随着物联网概念的发展和基于机器学习技术的数据处理算法的集成“智能”设备的发展,为实现最接近用户实际需求的最佳室内热舒适水平,开发了有前途的框架。本文通过比较 25 名参与者在测试舱中实际场景和虚拟现实中重现的相同环境下的反馈,研究了一种新方法评估视觉刺激对个人热舒适感知的影响的潜力。用户的生物特征数据和热感觉反馈以及环境参数被收集在一个数据集,并使用不同的机器学习技术进行管理。在所选择的算法中,确定了最适合预测个人热舒适感知的算法和有影响力的变量。在真实和虚拟场景中,确定了可以预测目标值的最重要变量,其平均准确率高于 0.99。