Suppr超能文献

蜥蜴从四足向蛇形过渡中穴居运动的进化。

Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards.

机构信息

Department of Biology, Clark University, Worcester, MA 01610, USA.

出版信息

Proc Biol Sci. 2020 Mar 25;287(1923):20200192. doi: 10.1098/rspb.2020.0192. Epub 2020 Mar 18.

Abstract

Dramatic evolutionary transitions in morphology are often assumed to be adaptive in a new habitat. However, these assumptions are rarely tested because such tests require intermediate forms, which are often extinct. In vertebrates, the evolution of an elongate, limbless body is generally hypothesized to facilitate locomotion in fossorial and/or cluttered habitats. However, these hypotheses remain untested because few studies examine the locomotion of species ranging in body form from tetrapod to snake-like. Here, we address these functional hypotheses by testing whether trade-offs exist between locomotion in surface, fossorial and cluttered habitats in Australian lizards, which include multiple intermediate forms. We found that snake-like species penetrated sand substrates faster than more lizard-like species, representing the first direct support of the adaptation to fossoriality hypothesis. By contrast, body form did not affect surface locomotion or locomotion through cluttered leaf litter. Furthermore, all species with hindlimbs used them during both fossorial and surface locomotion. We found no evidence of a trade-off between fossorial and surface locomotion. This may be either because employed kinematic strategies that took advantage of both axial- and limb-based propulsion. This may have led to the differential occupation of their habitat, facilitating diversification of intermediate forms.

摘要

形态上戏剧性的进化转变通常被认为是在新栖息地中的适应性。然而,这些假设很少被检验,因为这样的检验需要中间形式,而中间形式通常已经灭绝了。在脊椎动物中,细长的无肢身体的进化通常被假设为在穴居和/或杂乱的栖息地中有利于运动。然而,这些假设仍然未经检验,因为很少有研究检查从四足动物到蛇形的物种在身体形态上的运动。在这里,我们通过测试澳大利亚蜥蜴是否存在在表面、穴居和杂乱的栖息地中运动的权衡来解决这些功能假设,这些蜥蜴包括多种中间形式。我们发现,蛇形物种比更像蜥蜴的物种更快地穿透沙质基质,这代表了对穴居适应性假说的首次直接支持。相比之下,身体形态并不影响表面运动或穿过杂乱的落叶层的运动。此外,所有有后肢的物种在穴居和表面运动中都使用后肢。我们没有发现穴居和表面运动之间存在权衡的证据。这可能是因为它们采用了利用轴和肢体推进的运动学策略。这可能导致了它们栖息地的差异化,促进了中间形式的多样化。

相似文献

1
Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards.
Proc Biol Sci. 2020 Mar 25;287(1923):20200192. doi: 10.1098/rspb.2020.0192. Epub 2020 Mar 18.
2
Coordinating tiny limbs and long bodies: Geometric mechanics of lizard terrestrial swimming.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2118456119. doi: 10.1073/pnas.2118456119. Epub 2022 Jun 27.
3
Locomotion and palaeoclimate explain the re-evolution of quadrupedal body form in lizards.
Proc Biol Sci. 2020 Nov 11;287(1938):20201994. doi: 10.1098/rspb.2020.1994.
4
Prey-handling and the evolutionary ecology of sand-swimming lizards (Lerista : Scincidae).
Oecologia. 1997 Oct;112(3):351-361. doi: 10.1007/s004420050320.
5
A comparative analysis of the post-cranial skeleton of fossorial and non-fossorial gymnophthalmid lizards.
J Morphol. 2013 Aug;274(8):845-58. doi: 10.1002/jmor.20139. Epub 2013 Mar 18.
8
How head shape and substrate particle size affect fossorial locomotion in lizards.
J Exp Biol. 2021 Jun 1;224(11). doi: 10.1242/jeb.242244. Epub 2021 Jun 10.
9
Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles.
Integr Comp Biol. 2020 Jul 1;60(1):190-201. doi: 10.1093/icb/icaa015.
10
Embryonic development of the fossorial gymnophthalmid lizards Nothobachia ablephara and Calyptommatus sinebrachiatus.
Zoology (Jena). 2012 Oct;115(5):302-18. doi: 10.1016/j.zool.2012.03.003. Epub 2012 Aug 28.

引用本文的文献

1
Ecological drivers of jaw morphological evolution in lepidosaurs.
Proc Biol Sci. 2024 Dec;291(2036):20242052. doi: 10.1098/rspb.2024.2052. Epub 2024 Dec 11.
2
Patterns of girdle shape and their correlates in Australian limb-reduced skinks.
Proc Biol Sci. 2024 Oct;291(2032):20241653. doi: 10.1098/rspb.2024.1653. Epub 2024 Oct 2.
4
Convergent Anuran Middle Ear Loss Lacks a Universal, Adaptive Explanation.
Brain Behav Evol. 2023;98(6):290-301. doi: 10.1159/000534936. Epub 2023 Nov 1.
5
Scaling patterns of body plans differ among squirrel ecotypes.
PeerJ. 2023 Jan 25;11:e14800. doi: 10.7717/peerj.14800. eCollection 2023.
6
Discrete element models for understanding the biomechanics of fossorial animals.
Ecol Evol. 2022 Sep 16;12(9):e9331. doi: 10.1002/ece3.9331. eCollection 2022 Sep.
7
Coordinating tiny limbs and long bodies: Geometric mechanics of lizard terrestrial swimming.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2118456119. doi: 10.1073/pnas.2118456119. Epub 2022 Jun 27.
8
Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution.
Cells. 2021 Jul 6;10(7):1707. doi: 10.3390/cells10071707.
9
Hidden limbs in the "limbless skink" Brachymeles lukbani: Developmental observations.
J Anat. 2021 Sep;239(3):693-703. doi: 10.1111/joa.13447. Epub 2021 Apr 18.
10
Locomotion and palaeoclimate explain the re-evolution of quadrupedal body form in lizards.
Proc Biol Sci. 2020 Nov 11;287(1938):20201994. doi: 10.1098/rspb.2020.1994.

本文引用的文献

3
The convergent evolution of snake-like forms by divergent evolutionary pathways in squamate reptiles.
Evolution. 2019 Mar;73(3):481-496. doi: 10.1111/evo.13651. Epub 2018 Dec 5.
5
The topology of evolutionary novelty and innovation in macroevolution.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735). doi: 10.1098/rstb.2016.0422.
7
EVOLUTIONARY MECHANISMS OF LIMB LOSS IN TETRAPODS.
Evolution. 1978 Mar;32(1):73-92. doi: 10.1111/j.1558-5646.1978.tb01099.x.
8
Prey-handling and the evolutionary ecology of sand-swimming lizards (Lerista : Scincidae).
Oecologia. 1997 Oct;112(3):351-361. doi: 10.1007/s004420050320.
9
Locomotion in elongate fishes: A contact sport.
Zoology (Jena). 2015 Oct;118(5):312-9. doi: 10.1016/j.zool.2015.06.002. Epub 2015 Jun 23.
10
Visual system evolution and the nature of the ancestral snake.
J Evol Biol. 2015 Jul;28(7):1309-20. doi: 10.1111/jeb.12663. Epub 2015 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验