Suppr超能文献

揭示城市拥堵传播中类似反应扩散的动力学:来自大规模道路网络的见解。

Unraveling reaction-diffusion-like dynamics in urban congestion propagation: Insights from a large-scale road network.

作者信息

Bellocchi Leonardo, Geroliminis Nikolas

机构信息

Urban Transport Systems Laboratory (LUTS) École Polytechnique Fédérale de Lausanne (EPFL), GC C2 390, Station 18, Lausanne, CH-1015, Switzerland.

出版信息

Sci Rep. 2020 Mar 17;10(1):4876. doi: 10.1038/s41598-020-61486-1.

Abstract

We study the dynamical process of congestion formation for large-scale urban networks by exploring a unique dataset of taxi movements in a megacity. We develop a dynamic model based on a reaction and a diffusion term that properly reproduces the cascade phenomena of traffic. The interaction of these two terms brings the values of the speeds on road network in self-organized patterns and it reveals an elegant physical law that reproduces the dynamics of congestion with very few parameters. The results presented show a promising match with an available real data set of link speeds estimated from more than 40 millions of GPS coordinates per day of about 20,000 taxis in Shenzhen, China.

摘要

我们通过探索一个大城市出租车行驶的独特数据集,研究大规模城市网络拥堵形成的动态过程。我们基于反应项和扩散项开发了一个动态模型,该模型能够恰当地再现交通的级联现象。这两个项的相互作用使道路网络上的速度值以自组织模式呈现,并且揭示了一条简洁的物理规律,该规律只需极少参数就能再现拥堵动态。所展示的结果与来自中国深圳约20,000辆出租车每天超过4000万个GPS坐标估计的链路速度可用真实数据集有很好的匹配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70b5/7078338/7cccb9c688c6/41598_2020_61486_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验