Suppr超能文献

多时变交通网络的动态效率。

Dynamical efficiency for multimodal time-varying transportation networks.

机构信息

Urban Transport Systems Laboratory (LUTS), École Polytechnique Fédérale de Lausanne (EPFL), GC C2 390, Station 18, Lausanne, 1015, Switzerland.

School of Mathematics, Queen Mary University of London (QMUL), E5 Mile Road, London, UK.

出版信息

Sci Rep. 2021 Nov 29;11(1):23065. doi: 10.1038/s41598-021-02418-5.

Abstract

Spatial systems that experience congestion can be modeled as weighted networks whose weights dynamically change over time with the redistribution of flows. This is particularly true for urban transportation networks. The aim of this work is to find appropriate network measures that are able to detect critical zones for traffic congestion and bottlenecks in a transportation system. We propose for both single and multi-layered networks a path-based measure, called dynamical efficiency, which computes the travel time differences under congested and free-flow conditions. The dynamical efficiency quantifies the reachability of a location embedded in the whole urban traffic condition, in lieu of a myopic description based on the average speed of single road segments. In this way, we are able to detect the formation of congestion seeds and visualize their evolution in time as well-defined clusters. Moreover, the extension to multilayer networks allows us to introduce a novel measure of centrality, which estimates the expected usage of inter-modal junctions between two different transportation means. Finally, we define the so-called dilemma factor in terms of number of alternatives that an interconnected transportation system offers to the travelers in exchange for a small increase in travel time. We find macroscopic relations between the percentage of extra-time, number of alternatives and level of congestion, useful to quantify the richness of trip choices that a city offers. As an illustrative example, we show how our methods work to study the real network of a megacity with probe traffic data.

摘要

在交通网络中,拥堵的空间系统可以建模为加权网络,其权重随时间动态变化,反映流量的再分配。城市交通网络尤其如此。本研究旨在寻找合适的网络度量方法,以检测交通拥堵的关键区域和瓶颈。我们提出了一种基于路径的度量方法,称为动态效率,它在拥挤和自由流动条件下计算旅行时间的差异。动态效率量化了在整个城市交通条件下一个位置的可达性,而不是基于单一路段平均速度的短视描述。通过这种方式,我们能够检测到拥堵种子的形成,并可视化它们随时间的演变,形成明确的聚类。此外,多层网络的扩展允许我们引入一种新的中心性度量,该度量估计了两种不同交通方式之间的多模式交叉口的预期使用情况。最后,我们根据一个相互连接的交通系统为旅行者提供的额外出行时间、选择数量和拥堵程度,定义了所谓的两难因素。我们发现了宏观关系,即额外出行时间的百分比、选择数量和拥堵程度之间的关系,这有助于量化城市提供的出行选择的丰富程度。作为一个说明性的例子,我们展示了如何使用我们的方法来研究具有探测交通数据的特大城市的真实网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d6b/8630039/f13253acac39/41598_2021_2418_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验