Suppr超能文献

利用数字和高光谱成像衍生的生物标志物进行高通量表型分析,以研究基因型氮响应。

High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response.

机构信息

Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia.

Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.

出版信息

J Exp Bot. 2020 Jul 25;71(15):4604-4615. doi: 10.1093/jxb/eraa143.

Abstract

The development of crop varieties with higher nitrogen use efficiency is crucial for sustainable crop production. Combining high-throughput genotyping and phenotyping will expedite the discovery of novel alleles for breeding crop varieties with higher nitrogen use efficiency. Digital and hyperspectral imaging techniques can efficiently evaluate the growth, biophysical, and biochemical performance of plant populations by quantifying canopy reflectance response. Here, these techniques were used to derive automated phenotyping of indicator biomarkers, biomass and chlorophyll levels, corresponding to different nitrogen levels. A detailed description of digital and hyperspectral imaging and the associated challenges and required considerations are provided, with application to delineate the nitrogen response in wheat. Computational approaches for spectrum calibration and rectification, plant area detection, and derivation of vegetation index analysis are presented. We developed a novel vegetation index with higher precision to estimate chlorophyll levels, underpinned by an image-processing algorithm that effectively removed background spectra. Digital shoot biomass and growth parameters were derived, enabling the efficient phenotyping of wheat plants at the vegetative stage, obviating the need for phenotyping until maturity. Overall, our results suggest value in the integration of high-throughput digital and spectral phenomics for rapid screening of large wheat populations for nitrogen response.

摘要

培育氮高效作物品种对于可持续作物生产至关重要。高通量基因型和表型分析的结合将加速发现新型等位基因,从而培育氮高效作物品种。数字和高光谱成像技术可通过量化冠层反射率响应,高效评估植物群体的生长、生物物理和生化性能。在此,这些技术被用于自动表型分析指示生物标志物、生物量和叶绿素水平,以对应不同的氮水平。详细描述了数字和高光谱成像以及相关挑战和所需考虑因素,并应用于阐明小麦的氮响应。提出了用于光谱校准和校正、植物区域检测以及植被指数分析的计算方法。我们开发了一种新的植被指数,具有更高的精度来估计叶绿素水平,其基础是一种图像处理算法,有效地去除了背景光谱。还得出了数字芽生物量和生长参数,能够在营养阶段高效表型分析小麦植株,无需等到成熟后再进行表型分析。总体而言,我们的结果表明,高通量数字和光谱表型分析的整合对于快速筛选对氮响应的大型小麦群体具有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验