Suppr超能文献

利用超参数优化框架自动提取高光谱植被指数,实现高通量植物表型分析。

Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping.

机构信息

Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, Vic., 3400, Australia.

Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Vic., 3083, Australia.

出版信息

New Phytol. 2022 Mar;233(6):2659-2670. doi: 10.1111/nph.17947. Epub 2022 Jan 20.

Abstract

Hyperspectral vegetation indices (VIs) are widely deployed in agriculture remote sensing and plant phenotyping to estimate plant biophysical and biochemical traits. However, existing VIs consist mainly of simple two-band indices that limit the net performance and often do not generalise well for traits other than those for which they were originally designed. We present an automated hyperspectral vegetation index (AutoVI) system for the rapid generation of novel two- to six-band trait-specific indices in a streamlined process covering model selection, optimisation and evaluation, driven by the tree parzen estimator algorithm. Its performance was tested in generating novel indices to estimate chlorophyll and sugar contents in wheat. Results showed that AutoVI can rapidly generate complex novel VIs (at least a four-band index) that correlated strongly (R  > 0.8) with measured chlorophyll and sugar contents in wheat. Automated hyperspectral vegetation index-derived indices were used as features in simple and stepwise multiple linear regressions for chlorophyll and sugar content estimation, and outperformed the results achieved with the existing 47 VIs and those provided using partial least squares regression. The AutoVI system can deliver novel trait-specific VIs readily adoptable to high-throughput plant phenotyping platforms and should appeal to plant scientists and breeders. A graphical user interface for the AutoVI is provided here.

摘要

高光谱植被指数 (VIs) 在农业遥感和植物表型分析中被广泛应用于估算植物的生物物理和生化特性。然而,现有的 VIs 主要由简单的双波段指数组成,这限制了其净性能,并且通常不能很好地推广到除了最初设计的那些特性之外的其他特性。我们提出了一种自动化高光谱植被指数 (AutoVI) 系统,用于快速生成新颖的、针对特定性状的两到六波段指数,该系统的流程涵盖了模型选择、优化和评估,其驱动力是树 Parzen 估计器算法。我们在生成用于估计小麦中叶绿素和糖含量的新指数方面测试了其性能。结果表明,AutoVI 可以快速生成复杂的新颖 VIs(至少是四波段指数),与小麦中测量的叶绿素和糖含量具有很强的相关性 (R  > 0.8)。在使用简单和逐步多元线性回归进行叶绿素和糖含量估计时,基于自动化高光谱植被指数衍生的指数作为特征,其表现优于现有的 47 个 VIs 和使用偏最小二乘回归提供的特征。AutoVI 系统可以快速提供新颖的、针对特定性状的 VIs,这些 VIs 可以很容易地应用于高通量植物表型分析平台,应该会吸引植物科学家和育种家的关注。这里提供了 AutoVI 的图形用户界面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e4/9305872/e0d0fffc86cc/NPH-233-2659-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验