Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
J Plant Res. 2020 May;133(3):343-371. doi: 10.1007/s10265-020-01176-1. Epub 2020 Mar 18.
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O deficiency, both wetland and terrestrial plants use NAD(P) and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O escape and low O quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH as the nitrogen (N) source without NH-dependent respiratory increase, leading to efficient respiratory O consumption in roots. In contrast, some wetland plants with high O supply system efficiently use NO from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO-driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
湿地植物相较于陆生植物,能够耐受长期的严格缺氧和缺氧条件以及随后的再氧化应激。在缺氧时,湿地植物和陆生植物都利用在乙醇发酵、蔗糖降解和主要氨基酸代谢过程中产生的 NAD(P) 和 ATP。在线粒体呼吸链中,非磷酸化途径氧化 NADH 在陆生植物和湿地植物中很常见。由于湿地植物增强并结合了这些特性,尤其是在其根部,它们可以在长期的缺氧和缺氧胁迫下存活。湿地植物表现出两种相反的策略,即低氧逃逸策略(LOES)和低氧休眠策略(LOQS)。两种策略之间的差异归因于与植物激素相关的不同信号网络。在缺氧时,LOES 型植物表现出几种独特的特性,如茎伸长、通气组织形成和叶片适应,而 LOQS 型植物则停止生长并储存碳水化合物储备。许多湿地植物利用 NH 作为氮 (N) 源,而不需要 NH 依赖的呼吸增加,从而导致根部高效地消耗呼吸 O。相比之下,一些具有高 O 供应系统的湿地植物能够有效地利用土壤中发生硝化作用产生的 NO。氮利用策略的差异与厌氧 ATP 产生、NO 驱动的 ATP 产生和发酵的不同系统有关。不同的氮利用策略与湿地植物的缺氧或缺氧耐受性在功能上有关。