Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah 84112, United States.
ACS Chem Biol. 2020 Apr 17;15(4):904-914. doi: 10.1021/acschembio.9b00800. Epub 2020 Mar 25.
Second messenger signaling networks allow cells to sense and adapt to changing environmental conditions. In bacteria, the nearly ubiquitous second messenger molecule cyclic di-GMP coordinates diverse processes such as motility, biofilm formation, and virulence. In bacterial pathogens, these signaling networks allow the bacteria to survive changing environmental conditions that are experienced during infection of a mammalian host. While studies have examined the effects of cyclic di-GMP levels on virulence in these pathogens, it has not been possible to visualize cyclic di-GMP levels in real time during the stages of host infection. Toward this goal, we generate the first ratiometric, chemiluminescent biosensor scaffold that selectively responds to c-di-GMP. By engineering the biosensor scaffold, a suite of Venus-YcgR-NLuc (VYN) biosensors is generated that provide extremely high sensitivity ( < 300 pM) and large changes in the bioluminescence resonance energy transfer (BRET) signal (up to 109%). As a proof-of-concept that VYN biosensors can image cyclic di-GMP in tissues, we show that the VYN biosensors function in the context of a tissue phantom model, with only ∼10-10 biosensor-expressing cells required for the measurement. Furthermore, we utilize the biosensor to assess changes in cyclic di-GMP in grown with different inputs found in the host environment. The VYN sensors developed here can serve as robust diagnostic tools for high throughput screening, as well as genetically encodable tools for monitoring the dynamics of c-di-GMP in live cells, and lay the groundwork for live cell imaging of c-di-GMP dynamics in bacteria within tissues and other complex environments.
第二信使信号转导网络使细胞能够感知和适应不断变化的环境条件。在细菌中,几乎普遍存在的第二信使分子环二鸟苷酸 (cyclic di-GMP) 协调多种过程,如运动性、生物膜形成和毒力。在细菌病原体中,这些信号转导网络使细菌能够在感染哺乳动物宿主时经历的不断变化的环境条件下存活。虽然研究已经检查了环二鸟苷酸水平对这些病原体毒力的影响,但在宿主感染的阶段,无法实时可视化环二鸟苷酸水平。为此,我们生成了第一个比率型化学发光生物传感器支架,该支架选择性地响应 c-di-GMP。通过工程化生物传感器支架,生成了一套 Venus-YcgR-NLuc (VYN) 生物传感器,这些传感器提供了极高的灵敏度(<300 pM)和生物发光共振能量转移(BRET)信号的巨大变化(高达 109%)。作为 VYN 生物传感器可以在组织中成像环二鸟苷酸的概念验证,我们表明 VYN 生物传感器在组织体模模型的背景下起作用,仅需要约 10-10 个表达生物传感器的细胞即可进行测量。此外,我们利用该生物传感器评估在宿主环境中发现的不同输入下生长的环二鸟苷酸的变化。这里开发的 VYN 传感器可以作为高通量筛选的强大诊断工具,以及用于监测活细胞中环二鸟苷酸动力学的遗传可编码工具,并为在组织和其他复杂环境中活细菌中环二鸟苷酸动力学的活细胞成像奠定基础。