Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.
Mol Med Rep. 2020 May;21(5):2209-2219. doi: 10.3892/mmr.2020.11022. Epub 2020 Mar 12.
Ibrutinib, an FDA approved, orally administered BTK inhibitor, has demonstrated high response rates to diffuse large B‑cell lymphoma (DLBCL), however, complete responses are infrequent and acquired resistance to BTK inhibition can emerge. The present study investigated the role of the platelet‑derived growth factor D (PDGFD) gene and the ibrutinib resistance of DLBCL in relation to epidermal growth factor receptor (EGFR). Bioinformatics was used to screen and analyze differentially expressed genes (DEGs) in complete response (CR), partial response (PR) and stable disease (SD) in DLBCL treatment with ibrutinib, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze enriched the signaling pathways increasing DEGs. The Search Tool for Interactions of Chemicals database was used to analyze the target genes of ibrutinib. An interaction network of DEGs, disease‑related genes and ibrutinib was constructed. The expression of PDGFD in tissues that were resistant or susceptible to DLBCL/ibrutinib was detected via immunohistochemistry (IHC), and the expression of PDGFD in DLBCL/ibrutinib‑resistant strains and their parental counterparts were examined via reverse transcription‑quantitative PCR and western blot analyses. Subsequently, a drug‑resistant cell model of DLBCL/ibrutinib in which PDGFD was silenced was constructed. The apoptosis of the DLBCL/ibrutinib‑resistant strains was examined using MTT and flow cytometry assays. EGFR gene expression was then assessed. At the same time, a PDGFD‑interfering plasmid and an EGFR overexpression plasmid were transfected into the DLBCL drug‑resistant cells (TMD8‑ibrutinib, HBL1‑ibrutinib) separately or together. MTT was used to measure cell proliferation and changes in the IC50 of ibrutinib. A total of 86 DEGs that increased in the CR, PR and SD tissues were screened, and then evaluated with GO and KEGG. The interaction network diagram showed that there was a regulatory relationship between PDGFD and disease‑related genes, and that PDGFD could indirectly target the ibrutinib target gene EGFR, indicating that PDGFD could regulate DLBCL via EGFR. IHC results showed high expression of PDGFD in diffuse large B‑cell lymphoma tissues with ibrutinib tolerance. PDGFD expression in ibrutinib‑resistant DLBCL cells was higher compared with in parental cells. Following interference with PDGFD expression in ibrutinib‑resistant DLBCL cells, the IC50 value of ibrutinib decreased, the rate of apoptosis increased and EGFR expression decreased. In brief, EGFR overexpression can reverse the resistance of DLBCL to ibrutinib via PDGFD interference, and PDGFD induces the resistance of DLBCL to ibrutinib via EGFR.
伊布替尼是一种已获得美国食品药品监督管理局(FDA)批准的、口服的 BTK 抑制剂,在弥漫性大 B 细胞淋巴瘤(DLBCL)的治疗中显示出了较高的反应率,但完全缓解率较低,且对 BTK 抑制的获得性耐药可能会出现。本研究旨在探讨血小板衍生生长因子 D(PDGFD)基因与表皮生长因子受体(EGFR)在 DLBCL 中与伊布替尼耐药的关系。采用生物信息学方法筛选并分析 DLBCL 患者接受伊布替尼治疗后完全缓解(CR)、部分缓解(PR)和疾病稳定(SD)组织中差异表达基因(DEGs),并进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析,以分析富集的信号通路增加 DEGs。采用化学物质相互作用搜索工具数据库(Search Tool for Interactions of Chemicals database)分析伊布替尼的靶基因。构建 DEGs、疾病相关基因和伊布替尼的相互作用网络。采用免疫组织化学(IHC)检测对 DLBCL/伊布替尼耐药或敏感的组织中 PDGFD 的表达,采用逆转录-定量 PCR 和 Western blot 分析检测 DLBCL/伊布替尼耐药株及其亲本株中 PDGFD 的表达。随后,构建了沉默 PDGFD 的 DLBCL/伊布替尼耐药细胞模型。采用 MTT 和流式细胞术检测 DLBCL/伊布替尼耐药株的细胞凋亡。然后评估 EGFR 基因表达。同时,将 PDGFD 干扰质粒和 EGFR 过表达质粒分别或一起转染到 DLBCL 耐药细胞(TMD8-伊布替尼、HBL1-伊布替尼)中。采用 MTT 法测量细胞增殖和伊布替尼 IC50 的变化。筛选出 86 个在 CR、PR 和 SD 组织中上调的 DEGs,然后进行 GO 和 KEGG 评估。相互作用网络图显示,PDGFD 与疾病相关基因之间存在调控关系,PDGFD 可以间接靶向伊布替尼的靶基因 EGFR,提示 PDGFD 可以通过 EGFR 调节 DLBCL。IHC 结果显示,在对伊布替尼有耐受性的弥漫性大 B 细胞淋巴瘤组织中 PDGFD 表达较高。与亲本细胞相比,伊布替尼耐药的 DLBCL 细胞中 PDGFD 的表达更高。干扰伊布替尼耐药的 DLBCL 细胞中 PDGFD 的表达后,伊布替尼的 IC50 值降低,细胞凋亡率增加,EGFR 表达降低。总之,通过 PDGFD 干扰,EGFR 的过表达可以逆转 DLBCL 对伊布替尼的耐药性,而 PDGFD 通过 EGFR 诱导 DLBCL 对伊布替尼的耐药性。