Soong John Ty, Rolph Giles, Poots Alan J, Bell Derek
National University Hospital, Singapore
Chelsea and Westminster Hospital NHS Foundation Trust, London, UK.
Clin Med (Lond). 2020 Mar;20(2):183-188. doi: 10.7861/clinmed.2019-0249.
Identifying older people with clinical frailty, reliably and at scale, is a research priority. We measured frailty in older people using a novel methodology coding frailty syndromes on routinely collected administrative data, developed on a national English secondary care population, and explored its performance of predicting inpatient mortality and long length of stay at a single acute hospital.
We included patient spells from Secondary User Service (SUS) data for those ≥65 years with attendance to the emergency department or admission to West Middlesex University Hospital between 01 July 2016 to 01 July 2017. We created eight groups of frailty syndromes using diagnostic coding groups. We used descriptive statistics and logistic regression to explore performance of diagnostic coding groups for the above outcomes.
We included 17,199 patient episodes in the analysis. There was at least one frailty syndrome present in 7,004 (40.7%) patient episodes. The resultant model had moderate discrimination for inpatient mortality (area under the receiver operating characteristic curve (AUC) 0.74; 95% confidence interval (CI) 0.72-0.76) and upper quartile length of stay (AUC 0.731; 95% CI 0.722-0.741). There was good negative predictive value for inpatient mortality (98.1%).
Coded frailty syndromes significantly predict outcomes. Model diagnostics suggest the model could be used for screening of elderly patients to optimise their care.
可靠且大规模地识别患有临床衰弱的老年人是一项研究重点。我们采用一种新颖的方法,根据常规收集的管理数据对衰弱综合征进行编码,在英国全国二级医疗人群中开展研究,以测量老年人的衰弱情况,并探讨其对一家急性医院住院患者死亡率和长期住院时间的预测性能。
我们纳入了2016年7月1日至2017年7月1日期间年龄≥65岁且到急诊就诊或入住西米德尔塞克斯大学医院的二级用户服务(SUS)数据中的患者病历。我们使用诊断编码组创建了八组衰弱综合征。我们使用描述性统计和逻辑回归来探讨诊断编码组对上述结局的性能。
我们在分析中纳入了17199例患者病历。7004例(40.7%)患者病历中至少存在一种衰弱综合征。最终模型对住院患者死亡率有中等区分度(受试者工作特征曲线下面积(AUC)为0.74;95%置信区间(CI)为0.72 - 0.76),对住院时间上四分位数有中等区分度(AUC为0.731;95%CI为0.722 - 0.741)。对住院患者死亡率有良好的阴性预测值(98.1%)。
编码的衰弱综合征能显著预测结局。模型诊断表明该模型可用于筛查老年患者以优化其护理。