Pan Xiaoying, Zhao Yizhe, Chen Hao, Wei De, Zhao Chen, Wei Zhi
School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China.
School of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
Int J Biomed Imaging. 2020 Mar 3;2020:8460493. doi: 10.1155/2020/8460493. eCollection 2020.
Bone age assessment (BAA) is an essential topic in the clinical practice of evaluating the biological maturity of children. Because the manual method is time-consuming and prone to observer variability, it is attractive to develop computer-aided and automated methods for BAA. In this paper, we present a fully automatic BAA method. To eliminate noise in a raw X-ray image, we start with using U-Net to precisely segment hand mask image from a raw X-ray image. Even though U-Net can perform the segmentation with high precision, it needs a bigger annotated dataset. To alleviate the annotation burden, we propose to use deep active learning (AL) to select unlabeled data samples with sufficient information intentionally. These samples are given to Oracle for annotation. After that, they are then used for subsequential training. In the beginning, only 300 data are manually annotated and then the improved U-Net within the AL framework can robustly segment all the 12611 images in RSNA dataset. The AL segmentation model achieved a Dice score at 0.95 in the annotated testing set. To optimize the learning process, we employ six off-the-shell deep Convolutional Neural Networks (CNNs) with pretrained weights on ImageNet. We use them to extract features of preprocessed hand images with a transfer learning technique. In the end, a variety of ensemble regression algorithms are applied to perform BAA. Besides, we choose a specific CNN to extract features and explain why we select that CNN. Experimental results show that the proposed approach achieved discrepancy between manual and predicted bone age of about 6.96 and 7.35 months for male and female cohorts, respectively, on the RSNA dataset. These accuracies are comparable to state-of-the-art performance.
骨龄评估(BAA)是儿童生物学成熟度评估临床实践中的一个重要课题。由于手动方法耗时且容易出现观察者差异,因此开发用于BAA的计算机辅助和自动化方法很有吸引力。在本文中,我们提出了一种全自动BAA方法。为了消除原始X射线图像中的噪声,我们首先使用U-Net从原始X射线图像中精确分割出手部掩码图像。尽管U-Net可以高精度地进行分割,但它需要一个更大的标注数据集。为了减轻标注负担,我们建议使用深度主动学习(AL)有意选择具有足够信息的未标记数据样本。这些样本被交给神谕进行标注。之后,它们被用于后续训练。一开始,仅手动标注300个数据,然后AL框架内改进的U-Net可以稳健地分割RSNA数据集中的所有12611张图像。AL分割模型在标注测试集中的Dice分数达到0.95。为了优化学习过程,我们采用六个在ImageNet上具有预训练权重的现成深度卷积神经网络(CNN)。我们使用迁移学习技术用它们来提取预处理后手部图像的特征。最后,应用各种集成回归算法来进行BAA。此外,我们选择一个特定的CNN来提取特征并解释我们选择该CNN的原因。实验结果表明,在RSNA数据集上,所提出的方法在男性和女性队列中分别实现了手动和预测骨龄之间约6.96个月和7.35个月的差异。这些精度与当前的先进性能相当。