Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):14806-14813. doi: 10.1021/acsami.9b22116. Epub 2020 Mar 19.
The use of living microorganisms integrated within electrochemical devices is an expanding field of research, with applications in microbial fuel cells, microbial biosensors or bioreactors. We describe the use of porous nanocomposite materials prepared by DNA polymerization of carbon nanotubes (CNTs) and silica nanoparticles (SiNPs) for the construction of a programmable biohybrid system containing the exoelectrogenic bacterium . We initially demonstrate the electrical conductivity of the CNT-containing DNA composite by employment of chronopotentiometry, electrochemical impedance spectroscopy, and cyclic voltammetry. Cultivation of in the conductive materials shows that the exoelectrogenic bacteria populate the matrix of the conductive composite, while nonexoelectrogenic remain on its surface. Moreover, the ability to use extracellular electron transfer pathways is positively correlated with the number of cells within the conductive synthetic biofilm matrix. The -containing composite remains stable for several days and shows electrochemical activity, indicating that the conductive backbone is capable of extracting the metabolic electrons produced by the bacteria under strictly anoxic conditions and conducting them to the anode. Programmability of this biohybrid material system is demonstrated by on-demand release and degradation induced by a short-term enzymatic stimulus. We believe that the application possibilities of such biohybrid materials could even go beyond microbial biosensors, bioreactors, and fuel cell systems.
将活微生物集成到电化学装置中的使用是一个不断发展的研究领域,其应用包括微生物燃料电池、微生物生物传感器或生物反应器。我们描述了使用通过碳纳米管(CNT)和硅纳米颗粒(SiNP)的 DNA 聚合制备的多孔纳米复合材料来构建包含放电子细菌的可编程生物杂交系统。我们最初通过恒电流计时法、电化学阻抗谱和循环伏安法来证明含有 CNT 的 DNA 复合材料的导电性。在导电材料中培养 表明,放电子细菌在导电复合材料的基质中繁殖,而不放电子的 则留在其表面。此外,使用细胞外电子转移途径的能力与导电合成生物膜基质中的细胞数量呈正相关。含 的复合材料可稳定数天并显示电化学活性,表明导电骨架能够在严格缺氧条件下提取细菌产生的代谢电子,并将其引导至阳极。这种生物杂交材料系统的可编程性通过短期酶刺激诱导的按需释放和降解来证明。我们相信,这种生物杂交材料的应用可能性甚至可以超越微生物生物传感器、生物反应器和燃料电池系统。