Suppr超能文献

神经编码理论预测了记忆变异性估计的上限。

Theory of neural coding predicts an upper bound on estimates of memory variability.

机构信息

Department of Psychology, University of Cambridge.

出版信息

Psychol Rev. 2020 Oct;127(5):700-718. doi: 10.1037/rev0000189. Epub 2020 Mar 19.

Abstract

Observers reproducing elementary visual features from memory after a short delay produce errors consistent with the encoding-decoding properties of neural populations. While inspired by electrophysiological observations of sensory neurons in cortex, the population coding account of these errors is based on a mathematical idealization of neural response functions that abstracts away most of the heterogeneity and complexity of real neuronal populations. Here we examine a more physiologically grounded model based on the tuning of a large set of neurons recorded in macaque V1 and show that key predictions of the idealized model are preserved. Both models predict long-tailed distributions of error when memory resources are taxed, as observed empirically in behavioral experiments and commonly approximated with a mixture of normal and uniform error components. Specifically, for an idealized homogeneous neural population, the width of the fitted normal distribution cannot exceed the average tuning width of the component neurons, and this also holds to a good approximation for more biologically realistic populations. Examining eight published studies of orientation recall, we find a consistent pattern of results suggestive of a median tuning width of approximately 20°, which compares well with neurophysiological observations. The finding that estimates of variability obtained by the normal-plus-uniform mixture method are bounded from above leads us to reevaluate previous studies that interpreted a saturation in width of the normal component as evidence for fundamental limits on the precision of perception, working memory, and long-term memory. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

摘要

观察者在短暂延迟后从记忆中再现基本视觉特征,产生的错误与神经群体的编码-解码特性一致。虽然该群体编码解释是受大脑皮层感觉神经元的电生理观察启发,但它基于对神经反应功能的数学理想化,抽象掉了真实神经元群体的大部分异质性和复杂性。在这里,我们研究了一个基于在猕猴 V1 中记录的大量神经元调谐的更具生理基础的模型,并表明理想化模型的关键预测得到了保留。当记忆资源紧张时,这两种模型都预测会出现长尾分布的错误,这在行为实验中是观察到的,并且通常用正态分布和均匀分布错误分量的混合来近似。具体来说,对于理想化的同质神经群体,拟合正态分布的宽度不能超过组成神经元的平均调谐宽度,对于更具生物学现实性的群体,这也近似成立。我们考察了八项关于方向回忆的已发表研究,发现了一致的结果模式,表明中位数调谐宽度约为 20°,这与神经生理学观察结果非常吻合。发现正常加均匀混合方法得到的变异性估计值有上限,这使我们重新评估了以前的研究,这些研究将正态分量宽度的饱和解释为对感知、工作记忆和长期记忆精度的基本限制的证据。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89a/7571317/014125efd46d/rev_127_5_700_fig1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验