Suppr超能文献

表征几何学解释了行为任务中令人困惑的错误分布。

Representational geometry explains puzzling error distributions in behavioral tasks.

作者信息

Wei Xue-Xin, Woodford Michael

机构信息

Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712.

Department of Psychology, The University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2407540122. doi: 10.1073/pnas.2407540122. Epub 2025 Jan 24.

Abstract

Measuring and interpreting errors in behavioral tasks is critical for understanding cognition. Conventional wisdom assumes that encoding/decoding errors for continuous variables in behavioral tasks should naturally have Gaussian distributions, so that deviations from normality in the empirical data indicate the presence of more complex sources of noise. This line of reasoning has been central for prior research on working memory. Here, we reassess this assumption and find that even in ideal observer models with Gaussian encoding noise, the error distribution is generally non-Gaussian, contrary to the commonly held belief. Critically, we find that the shape of the error distribution is determined by the geometrical structure of the encoding manifold via a simple rule. In the case of a high-dimensional geometry, the error distributions naturally exhibit flat tails. Using this insight, we apply our theory to visual short-term memory tasks, and find that it can account for a large array of experimental data with only two free parameters. Our results challenge the dominant view in the mechanisms and capacity constraints of working memory systems. They instead suggest that the Bayesian framework, which explains various aspects of perceptual behavior, also provides an excellent account of working memory. Overall, our results establish a direct connection between neural manifold geometry and behavior, and call attention to the geometry of the representation as a critically important, yet underappreciated factor in determining the character of errors in human behavior.

摘要

测量和解释行为任务中的误差对于理解认知至关重要。传统观点认为,行为任务中连续变量的编码/解码误差自然应具有高斯分布,因此经验数据中偏离正态性表明存在更复杂的噪声源。这一推理思路一直是先前工作记忆研究的核心。在此,我们重新评估这一假设,发现即使在具有高斯编码噪声的理想观察者模型中,误差分布通常也是非高斯的,这与普遍看法相反。至关重要的是,我们发现误差分布的形状由编码流形的几何结构通过一个简单规则决定。在高维几何的情况下,误差分布自然呈现出平尾。利用这一见解,我们将理论应用于视觉短期记忆任务,发现仅用两个自由参数就能解释大量实验数据。我们的结果挑战了工作记忆系统机制和容量限制方面的主流观点。相反,它们表明解释感知行为各个方面的贝叶斯框架也能很好地解释工作记忆。总体而言,我们的结果在神经流形几何与行为之间建立了直接联系,并提醒人们注意表征的几何结构是决定人类行为误差特征的一个极其重要但却未得到充分重视的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd6b/11789072/0d68b091290f/pnas.2407540122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验