Auditory Computations lab, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.
Research Group Neural and Environmental Rhythms, MPI for Empirical Aesthetics, Frankfurt, Germany.
PLoS Biol. 2020 Mar 19;18(3):e3000658. doi: 10.1371/journal.pbio.3000658. eCollection 2020 Mar.
The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50-80 Hz and 12-30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4-8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats.
发声能力在脊椎动物中普遍存在,但控制发声的神经网络仍知之甚少。在这里,我们在蝙蝠发出回声定位脉冲和通讯叫声时,同时在额叶皮层和背侧纹状体(尾状核)进行神经元记录。这种方法使我们能够评估哺乳动物发声生产的一般方面和蝙蝠回声定位的独特进化适应。我们的数据表明,在发声之前,蝙蝠额叶皮层和背侧纹状体中的高伽马和β振荡(分别为 50-80 Hz 和 12-30 Hz)发生了独特的变化。这种神经振荡的精确微调可以使动物选择性地激活产生回声定位或通讯发声所需的运动程序。此外,额叶和纹状体区域之间的功能耦合,发生在θ振荡带(4-8 Hz),在毫秒级水平上有明显差异,这取决于动物是处于导航模式(即发出回声定位脉冲)还是社会交流模式(发出通讯叫声)。总的来说,这项研究表明,额纹状的振荡可能为蝙蝠的发声控制提供神经关联。