Suppr超能文献

从洪水保险大数据中揭示的美国洪水脆弱性的新见解。

New insights into US flood vulnerability revealed from flood insurance big data.

机构信息

School of Geographical Sciences, University of Bristol, Bristol, UK.

Fathom, Bristol, UK.

出版信息

Nat Commun. 2020 Mar 19;11(1):1444. doi: 10.1038/s41467-020-15264-2.

Abstract

Improvements in modelling power and input data have vastly improved the precision of physical flood models, but translation into economic outputs requires depth-damage functions that are inadequately verified. In particular, flood damage is widely assumed to increase monotonically with water depth. Here, we assess flood vulnerability in the US using >2 million claims from the National Flood Insurance Program (NFIP). NFIP claims data are messy, but the size of the dataset provides powerful empirical tests of damage patterns and modelling approaches. We show that current depth-damage functions consist of disparate relationships that match poorly with observations. Observed flood losses are not monotonic functions of depth, but instead better follow a beta function, with bimodal distributions for different water depths. Uncertainty in flood losses has been called the main bottleneck in flood risk studies, an obstacle that may be remedied using large-scale empirical flood damage data.

摘要

建模能力和输入数据的改进极大地提高了物理洪水模型的精度,但将其转化为经济产出需要经过深度验证的损害函数。特别是,洪水损害被广泛认为与水深呈单调递增关系。在这里,我们利用国家洪水保险计划(NFIP)的 200 多万份理赔数据评估了美国的洪水脆弱性。NFIP 理赔数据混乱,但数据集的规模为损害模式和建模方法提供了强大的实证检验。我们表明,当前的水深损害函数包含不一致的关系,与观测结果匹配不佳。观测到的洪水损失不是深度的单调函数,而是更好地遵循β函数,对于不同的水深分布呈双峰分布。洪水损失的不确定性被称为洪水风险研究的主要瓶颈,使用大规模的洪水损害经验数据可能可以克服这一障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd5/7081335/4b949cb3f20b/41467_2020_15264_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验