Suppr超能文献

人工微生物组异质性激发了六个实用的行动主题和示例,以提高研究动力驱动的可重复性。

Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility.

机构信息

Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.

出版信息

Sci Rep. 2020 Mar 19;10(1):5039. doi: 10.1038/s41598-020-60900-y.

Abstract

With >70,000 yearly publications using mouse data, mouse models represent the best engrained research system to address numerous biological questions across all fields of science. Concerns of poor study and microbiome reproducibility also abound in the literature. Despite the well-known, negative-effects of data clustering on interpretation and study power, it is unclear why scientists often house >4 mice/cage during experiments, instead of ≤2. We hypothesized that this high animal-cage-density  practice abounds in published literature because more mice/cage could be perceived as a strategy to reduce housing costs. Among other sources of 'artificial' confounding, including cyclical oscillations of the 'dirty-cage/excrement microbiome', we ranked by priority the heterogeneity of modern husbandry practices/perceptions across three professional organizations that we surveyed in the USA. Data integration (scoping-reviews, professional-surveys, expert-opinion, and 'implementability-score-statistics') identified Six-Actionable Recommendation Themes (SART) as a framework to re-launch emerging protocols and intuitive statistical strategies to use/increase study power. 'Cost-vs-science' discordance was a major aspect explaining heterogeneity, and scientists' reluctance to change. With a 'housing-density cost-calculator-simulator' and fully-annotated statistical examples/code, this themed-framework streamlines the rapid analysis of cage-clustered-data and promotes the use of 'study-power-statistics' to self-monitor the success/reproducibility of basic and translational research. Examples are provided to help scientists document analysis for study power-based sample size estimations using preclinical mouse data to support translational clinical trials, as requested in NIH/similar grants or publications.

摘要

每年有超过 70000 篇使用小鼠数据的论文发表,小鼠模型代表了最好的研究系统,可以解决各个科学领域的大量生物学问题。人们对研究的可重复性和微生物组的重现性也存在诸多担忧。尽管众所周知,数据聚类对解释和研究能力有负面影响,但科学家们为什么经常在实验中饲养>4 只/笼的老鼠,而不是≤2 只,这一点仍不清楚。我们假设,这种高笼密度的做法在已发表的文献中很常见,因为更多的老鼠/笼可能被视为降低饲养成本的一种策略。除了其他“人为”混杂因素(包括“脏笼/粪便微生物组”的周期性波动)之外,我们还对美国三个专业组织进行了调查,按优先级对现代饲养实践/观念的异质性进行了排名。数据集成(范围综述、专业调查、专家意见和“可实施性评分统计”)确定了六个可操作的建议主题(SART)作为框架,以重新启动新兴协议和直观的统计策略,以增加研究能力。“成本与科学”的不和谐是解释异质性和科学家不愿改变的主要方面。借助“饲养密度成本计算器模拟器”和完全注释的统计示例/代码,这个主题框架简化了对笼聚类数据的快速分析,并促进了“研究能力统计”的使用,以自我监测基础研究和转化研究的成功/可重复性。提供了示例来帮助科学家记录使用临床前小鼠数据进行基于研究能力的样本量估计的分析,以支持转化临床试验,这是 NIH/类似资助或出版物中所要求的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7abc/7081340/88f1acbe0420/41598_2020_60900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验