School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China.
ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17177-17184. doi: 10.1021/acsami.9b22558. Epub 2020 Mar 31.
In this work, a lab-on-paper cathode photoelectrochemical (PEC) sensing platform was constructed for ultrasensitive microRNA-141 (miRNA-141) assay using cascaded multiple photo-active structures as signal generators and hemin/Pt nanoparticle (Pt NP) trunk-branching-decorated DNA dendrimers as signal reinforcers. Specifically, pyramid-like CuO was first in situ grown on the Au nanoparticle-functionalized tangled cellulose fibers network, followed by the sensitization of trepang-like BiVO-BiS heterostructures, forming the cascaded sensitization structures. Then, the DNA dendrimer was introduced into the photocathode sensing interface by coupling the duplex-specific-nuclease (DSN)-induced target recycling reaction with multiple-branched hybridization chain reaction (MHCR). The programmed target recycling procedures propelled using DSN guaranteed the highly amplified transduction of miRNA-141 to the exposed initiator strand, which triggered the cascaded MHCR accompanied by the formation of the DNA dendrimer with unique trunk-branching structures. Finally, the hemin/Pt NP trunk-branching-decorated DNA dendrimer (HPTD) was acquired by the assembly of Pt NPs and hemin on the trunk and branch, respectively. The resulting HPTD with the synergy catalysis of Pt NPs and hemin could efficiently catalyze the decomposition of HO for in situ generation of O as the electron acceptor, leading to an enhanced photocurrent response. Based on the target-dependent photocurrent enhancement, ultrasensitive determination of miRNA-141 was realized with persuasive selectivity, high stability, and excellent reproducibility. Thus, the proposed paper-based cathode PEC sensing platform possessed promising application prospect in clinical miRNA diagnosis.
在这项工作中,构建了一种基于纸的阴极光电化学(PEC)传感平台,用于使用级联多光活性结构作为信号发生器和血红素/Pt 纳米颗粒(Pt NP)主干分支修饰的 DNA 树枝状大分子作为信号增强剂,对超灵敏 microRNA-141(miRNA-141)进行分析。具体来说,首先在金纳米颗粒功能化的缠结纤维素纤维网络上原位生长金字塔状的 CuO,然后敏化海参状 BiVO-BiS 异质结构,形成级联敏化结构。然后,通过将双链特异性核酸酶(DSN)诱导的靶标循环反应与多分支杂交链式反应(MHCR)相结合,将 DNA 树枝状大分子引入光阴极传感界面。使用 DSN 推进的编程靶标循环程序保证了 miRNA-141 向暴露的引发子链的高度放大转导,这触发了级联的 MHCR,同时形成具有独特主干分支结构的 DNA 树枝状大分子。最后,血红素/Pt NP 主干分支修饰的 DNA 树枝状大分子(HPTD)通过分别在主干和分支上组装 Pt NPs 和血红素获得。具有 Pt NPs 和血红素协同催化作用的所得 HPTD 能够有效地催化 HO 的分解,用于原位生成 O 作为电子受体,从而导致增强的光电流响应。基于靶标依赖性的光电流增强,实现了超灵敏的 miRNA-141 测定,具有令人信服的选择性、高稳定性和出色的重现性。因此,所提出的基于纸张的阴极 PEC 传感平台在临床 miRNA 诊断中具有广阔的应用前景。