Suppr超能文献

一种经过实地测试的用于采收冰山生菜的机器人系统。

A field-tested robotic harvesting system for iceberg lettuce.

作者信息

Birrell Simon, Hughes Josie, Cai Julia Y, Iida Fumiya

机构信息

Department of Engineering University of Cambridge Cambridge UK.

出版信息

J Field Robot. 2020 Mar;37(2):225-245. doi: 10.1002/rob.21888. Epub 2019 Jul 7.

Abstract

Agriculture provides an unique opportunity for the development of robotic systems; robots must be developed which can operate in harsh conditions and in highly uncertain and unknown environments. One particular challenge is performing manipulation for autonomous robotic harvesting. This paper describes recent and current work to automate the harvesting of iceberg lettuce. Unlike many other produce, iceberg is challenging to harvest as the crop is easily damaged by handling and is very hard to detect visually. A platform called Vegebot has been developed to enable the iterative development and field testing of the solution, which comprises of a vision system, custom end effector and software. To address the harvesting challenges posed by iceberg lettuce a bespoke vision and learning system has been developed which uses two integrated convolutional neural networks to achieve classification and localization. A custom end effector has been developed to allow damage free harvesting. To allow this end effector to achieve repeatable and consistent harvesting, a control method using force feedback allows detection of the ground. The system has been tested in the field, with experimental evidence gained which demonstrates the success of the vision system to localize and classify the lettuce, and the full integrated system to harvest lettuce. This study demonstrates how existing state-of-the art vision approaches can be applied to agricultural robotics, and mechanical systems can be developed which leverage the environmental constraints imposed in such environments.

摘要

农业为机器人系统的发展提供了独特的机遇;必须开发能够在恶劣条件以及高度不确定和未知环境中运行的机器人。一个特别的挑战是实现自主机器人收获的操作。本文描述了近期和当前在实现冰山生菜收获自动化方面所做的工作。与许多其他农产品不同,冰山生菜收获具有挑战性,因为这种作物在处理过程中容易受损,而且很难通过视觉检测到。已开发出一个名为Vegebot的平台,以实现该解决方案的迭代开发和实地测试,该解决方案由视觉系统、定制末端执行器和软件组成。为应对冰山生菜带来的收获挑战,已开发出一种定制的视觉和学习系统,该系统使用两个集成的卷积神经网络来实现分类和定位。已开发出一种定制末端执行器,以实现无损收获。为使这种末端执行器能够实现可重复和一致的收获,一种使用力反馈的控制方法可实现对地面的检测。该系统已在实地进行测试,并获得了实验证据,证明视觉系统在定位和分类生菜方面取得了成功,以及整个集成系统在收获生菜方面取得了成功。这项研究展示了如何将现有的先进视觉方法应用于农业机器人技术,以及如何开发利用此类环境中施加的环境约束的机械系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/715e/7074041/009077a121c3/ROB-37-225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验