Wang Fuli, Urquizo Rodolfo Cuan, Roberts Penelope, Mohan Vishwanathan, Newenham Chris, Ivanov Andrey, Dowling Robin
School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ UK.
Wilkin & Sons Ltd, Factory Hill, Tiptree, Essex CO5 0RF UK.
Precis Agric. 2023;24(3):1072-1096. doi: 10.1007/s11119-023-10000-4. Epub 2023 Mar 13.
Multiple interlinked factors like demographics, migration patterns, and economics are presently leading to the critical shortage of labour available for low-skilled, physically demanding tasks like soft fruit harvesting. This paper presents a biomimetic robotic solution covering the full 'Perception-Action' loop targeting harvesting of strawberries in a state-of-the-art vertical growing environment. The novelty emerges from both dealing with crop/environment variance as well as configuring the robot action system to deal with a range of runtime task constraints. Unlike the commonly used deep neural networks, the proposed perception system uses conditional Generative Adversarial Networks to identify the ripe fruit using synthetic data. The network can effectively train the synthetic data using the image-to-image translation concept, thereby avoiding the tedious work of collecting and labelling the real dataset. Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, our platform's action system can coordinate the arm to reach/cut the stem using the Passive Motion Paradigm framework inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. While this article focuses on strawberry harvesting, ongoing research towards adaptation of the architecture to other crops such as tomatoes and sweet peppers is briefly described.
The online version contains supplementary material available at 10.1007/s11119-023-10000-4.
目前,人口统计学、移民模式和经济等多个相互关联的因素正导致低技能、体力要求高的工作(如软水果采摘)劳动力严重短缺。本文提出了一种仿生机器人解决方案,涵盖完整的“感知 - 行动”循环,目标是在先进的垂直种植环境中进行草莓采摘。其新颖之处在于既能应对作物/环境差异,又能配置机器人行动系统以处理一系列运行时任务约束。与常用的深度神经网络不同,所提出的感知系统使用条件生成对抗网络,利用合成数据识别成熟果实。该网络可以使用图像到图像的转换概念有效地训练合成数据,从而避免收集和标记真实数据集的繁琐工作。一旦使用立体相机生成的点云数据定位了可收获的果实,我们平台的行动系统就可以使用受大脑运动神经控制研究启发的被动运动范式框架,协调手臂到达/切断果柄。本文展示了草莓检测、到达/切断果实果柄以及扩展到分析复杂冠层结构/双手协调(搜索/采摘)的田间试验结果。虽然本文重点关注草莓采摘,但也简要描述了正在进行的使该架构适用于其他作物(如西红柿和甜椒)的研究。
在线版本包含可在10.1007/s11119 - 023 - 10000 - 4获取的补充材料。