Aldrian Alexia, Viczek Sandra A, Pomberger Roland, Sarc Renato
Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria.
MethodsX. 2020 Feb 21;7:100837. doi: 10.1016/j.mex.2020.100837. eCollection 2020.
Solid Recovered Fuels (SRF) include non-combustible mineral components (e.g. CaCO, SiO, AlO) that are required as raw materials for producing clinker and are completely incorporated into the clinker during the thermal recovery of SRF. This paper discusses simple and practicable ways of finding the relative amount of SRF that may be utilised as raw material (given as the recycling index). For this purpose, the entire mineral content of SRF was determined as the ash content and its main components were identified using different analytical methods.•A fusion melt of the previously incinerated sample with subsequent measuring using ICP-OES and XRF as well as a total digestion of the incinerated and non-incinerated sample with subsequent measuring using ICP-OES/ICP-MS were applied.•The results showed a good agreement of all four analytical methods for the elementary oxides AlO, CaO, FeO, SiO, TiO, PO and MgO (relative deviation from 6.6 to 38.9%) and slightly higher deviations for KO, NaO and SO (14.2-96.0%).•It was also shown that different incineration temperatures (550 °C, 815 °C and 950 °C) have no effect on the result of the recycling index unless it is assumed that the recycling index equals the ash content.
固体回收燃料(SRF)包含不可燃的矿物成分(如碳酸钙、二氧化硅、氧化铝),这些成分是生产熟料所需的原材料,并且在SRF的热回收过程中会完全融入熟料中。本文讨论了确定可作为原材料使用的SRF相对量(以回收指数表示)的简单可行方法。为此,将SRF的全部矿物含量测定为灰分含量,并使用不同的分析方法鉴定其主要成分。•采用先将先前焚烧的样品进行熔融,随后使用电感耦合等离子体发射光谱仪(ICP-OES)和X射线荧光光谱仪(XRF)进行测量,以及将焚烧和未焚烧的样品进行完全消解,随后使用ICP-OES/ICP-MS进行测量的方法。•结果表明,对于氧化铝、氧化钙、氧化亚铁、二氧化硅、二氧化钛、五氧化二磷和氧化镁等元素氧化物,所有四种分析方法的结果吻合良好(相对偏差为6.6%至38.9%),而对于氧化钾、氧化钠和三氧化硫,偏差略高(14.2% - 96.0%)。•还表明,不同的焚烧温度(550°C、815°C和950°C)对回收指数的结果没有影响,除非假定回收指数等于灰分含量。