Suppr超能文献

一种用于高尔基器成像的高效近红外发射人工超分子光捕获系统。

An Efficient Near-Infrared Emissive Artificial Supramolecular Light-Harvesting System for Imaging in the Golgi Apparatus.

机构信息

Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 211189, China.

Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.

出版信息

Angew Chem Int Ed Engl. 2020 Jun 22;59(26):10493-10497. doi: 10.1002/anie.202003427. Epub 2020 Apr 14.

Abstract

Light-harvesting systems are an important way for capturing, transferring and utilizing light energy. It remains a key challenge to develop highly efficient artificial light-harvesting systems. Herein, we report a supramolecular co-assembly based on lower-rim dodecyl-modified sulfonatocalix[4]arene (SC4AD) and naphthyl-1,8-diphenyl pyridinium derivative (NPS) as a light-harvesting platform. NPS as a donor shows significant aggregation induced emission enhancement (AIEE) after assembling with SC4AD. Upon introduction of Nile blue (NiB) as an acceptor into the NPS-SC4AD co-assembly, the light-harvesting system becomes near-infrared (NIR) emissive (675 nm). Importantly, the NIR emitting NPS-SC4AD-NiB system exhibits an ultrahigh antenna effect (33.1) at a high donor/acceptor ratio (250:1). By co-staining PC-3 cells with a Golgi staining reagent, NBD C -ceramide, NIR imaging in the Golgi apparatus has been demonstrated using these NIR emissive nanoparticles.

摘要

光捕获系统是捕获、传递和利用光能的一种重要方式。开发高效的人工光捕获系统仍然是一个关键挑战。在此,我们报告了一种基于低边缘十二烷基修饰的磺化杯[4]芳烃(SC4AD)和萘基-1,8-二苯基吡啶鎓衍生物(NPS)的超分子共组装作为光捕获平台。NPS 作为给体,与 SC4AD 组装后表现出显著的聚集诱导发射增强(AIEE)。在将尼罗蓝(NiB)作为受体引入 NPS-SC4AD 共组装后,光捕获系统变为近红外(NIR)发射(675nm)。重要的是,在高给体/受体比(250:1)下,近红外发射的 NPS-SC4AD-NiB 体系具有超高的天线效应(33.1)。通过用高尔基体染色试剂 NBD C -神经酰胺共染色 PC-3 细胞,已经证明可以使用这些近红外发射纳米粒子对高尔基体进行近红外成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验