School of Information and Software Engineering, University of Electronic Science and Technology of China, China.
Department of Electrical and Computer Engineering, Iowa State University, Ames IA, United States of America.
Neural Netw. 2020 Jun;126:52-64. doi: 10.1016/j.neunet.2020.03.010. Epub 2020 Mar 13.
Although it is one of the most widely used methods in recommender systems, Collaborative Filtering (CF) still has difficulties in modeling non-linear user-item interactions. Complementary to this, recently developed deep generative model variants (e.g., Variational Autoencoder (VAE)) allowing Bayesian inference and approximation of the variational posterior distributions in these models, have achieved promising performance improvement in many areas. However, the choices of variation distribution - e.g., the popular diagonal-covariance Gaussians - are insufficient to recover the true distributions, often resulting in biased maximum likelihood estimates of the model parameters. Aiming at more tractable and expressive variational families, in this work we extend the flow-based generative model to CF for modeling implicit feedbacks. We present the Collaborative Autoregressive Flows (CAF) for the recommender system, transforming a simple initial density into more complex ones via a sequence of invertible transformations, until a desired level of complexity is attained. CAF is a non-linear probabilistic approach allowing uncertainty representation and exact tractability of latent-variable inference in item recommendations. Compared to the agnostic-presumed prior approximation used in existing deep generative recommendation approaches, CAF is more effective in estimating the probabilistic posterior and achieves better recommendation accuracy. We conducted extensive experimental evaluations demonstrating that CAF can capture more effective representation of latent factors, resulting in a substantial gain on recommendation compared to the state-of-the-art approaches.
虽然协同过滤 (CF) 是推荐系统中最广泛使用的方法之一,但它仍然难以对非线性用户-项目交互进行建模。最近开发的深度生成模型变体(例如变分自动编码器 (VAE))在这些模型中允许贝叶斯推理和对变分后验分布进行近似,在许多领域取得了有希望的性能提升。然而,变分分布的选择——例如流行的对角协方差高斯分布——不足以恢复真实分布,通常导致模型参数的有偏极大似然估计。针对更易于处理和表达的变分族,我们在这项工作中将基于流的生成模型扩展到 CF 中,以对隐式反馈进行建模。我们提出了协同自回归流 (CAF) 用于推荐系统,通过一系列可逆变换将简单的初始密度转换为更复杂的密度,直到达到所需的复杂度水平。CAF 是一种非线性概率方法,允许在项目推荐中表示不确定性和对潜在变量推理进行精确处理。与现有的深度生成推荐方法中使用的不可知先验近似相比,CAF 更有效地估计概率后验,并实现更好的推荐准确性。我们进行了广泛的实验评估,证明 CAF 可以捕获更有效的潜在因素表示,与最先进的方法相比,在推荐方面取得了实质性的收益。